BIG DATA’S DIRTY SECRET

Harvey J. Stein
Head, Quantitative Risk Analytics
Bloomberg

Machine Learning in Finance Workshop
April 20, 2018
Introduction
LOTS OF BIG DATA

Big data is big news!

Google search results for "big data" OR "machine learning"

About 99,900,000 results (0.75 seconds)
Almost twice as popular as “President Trump”!
TRUMPS TRUMP

Almost twice as popular as “President Trump”!

Although I guess that’s not so surprising…
FAKE NEWS

But big data analysis doesn’t mean better data analysis
▶ More variables
▶ More outliers
▶ More noise
▶ More spurious results

Conclusion?
▶ Data needs to be cleaned

We will discuss data anomalies and methods for cleaning data
ACKNOWLEDGEMENTS

Work on data cleaning with:
- Mario Bondioli
- Jan Dash
- Xipei Yang
- Yan Zhang
Symptoms
THE DATA

We worked with credit default swap (CDS) spread data

- Spread = cost (in bp) of insuring against default of a given company for a given time period
- Quoted for 6 month, 1 year, 2 year, 3 year, 5 year, 7 year and 10 year horizons
- Quoted for 1,000s of different individual companies
- Quoted both for senior and subordinated debt
- Consider market close data
DATA ISSUES

General data quality issues
▶ Missing values
▶ Bad values

Clean for a purpose
▶ Relative valuation
▶ Mark to market
▶ Trading strategy development
▶ Risk analysis

Risk
▶ Missing data points
 ▶ Problematic return calculations
 ▶ Problematic covariance calculations
▶ Bad values
 ▶ Bad returns
 ▶ Bad variances
CDS DATA ISSUES

CDS data specific characteristics:
- 6 month point missing for first 2.5 years
- Often large range of values
- High volatility makes detecting bad values difficult
- Data used for risk analysis
 - Deleting outliers reduces risk measures
 - Leaving anomalies inflates risk measures
TYPICAL APPROACHES

Hole filling
- Regression
- Interpolation
- Flat filling

Anomaly detection
- Comparison to trailing volatility
- Cluster analysis
- Neural networks
- Statistics-sensitive Non-linear Iterative Peak (SNIP) clipping algorithm
Hole filling
Hole filling Overview

▶ Use Multi-channel Singular Spectrum Analysis (MSSA) hole filling algorithm
▶ Variant of Singular Spectrum Analysis (SSA) used simultaneously on multiple time series
▶ Decomposes each time series into a sum of components, one for each eigenvector
▶ Borrowed from geophysical data analysis
▶ Makes use of both space relationships (covariance) and time relationships (autocovariance and cross-autocovariance)
SSA

Uses:
▶ Inspect eigenvectors and components to extract specific features of data
▶ Smooth data by throwing away small eigenvalues
▶ Helpful for stabilizing correlation calculations (smooth data then compute)

References:
▶ A beginner’s guide to SSA, Claessen and Groth, [CG]
▶ Singular spectrum analysis, Wikipedia, [Wik16]
▶ Analysis of Time Series Structure: SSA and Related Techniques, Golyandina, Nekrutkin, and Zhigljavsky, [GNZ01]
▶ A review on singular spectrum analysis for economic and financial time series, Hassani and Thomakos, [HT10]
▶ SSA, Random Matrix Theory, and Noise-Reduced Correlations, Dash et al., [Das+16a]
▶ Stable Reduced-Noise ’Macro’ SSA–Based Correlations for Long-Term Counterparty Risk Management, Dash et al., [Das+16b]
MSSA

Multi-channel Singular Spectrum Analysis (MSSA):
▶ Applies SSA algorithm to a set of time series simultaneously

Uses:
▶ Same as SSA, but takes relationships between different time series into account
▶ Used for forecasting

References:
▶ Multivariate singular spectrum analysis for forecasting revisions to real-time data, Patterson et al., [Pat+11]
▶ Multivariate singular spectrum analysis: A general view and new vector forecasting approach, Hassani and Mahmoudvand, [HM13]
▶ Advanced spectral methods for climatic time series, Ghil et al., [Ghi+02]
MSSA BASED HOLE FILLING

MSSA hole filling algorithm:

- Nominally fill holes (e.g. via interpolation)
- Use level \(l \) hole filling algorithm for \(l = l_0 \):
 - Run MSSA algorithm
 - Replace holes with MSSA reconstruction using \(l \) biggest singular values
 - Repeat until convergence
- Increment \(l \) by one and repeat until adding singular values doesn’t have much impact and used enough singular values

References:

- Spatio-temporal filling of missing points in geophysical data sets, Kondrashov and Ghil, [KG06]
MIXED RESULTS

Unfortunately, it doesn’t always work:

NAB Senior USD: Original MSSA hole filling

03/07 05/07 07/07 09/07 11/07 01/08
-10
0
10
20
30
40
50
60
70
80

6mo
1yr
2yr
3yr
4yr
5yr
7yr
10yr
OBSERVATIONS

Observations:
- Sometimes MSSA doesn’t line up with actual data
- Sometimes MSSA bottoms out
- Using too few singular values will smooth the data

Solutions:
- Anchoring – patch in data in a more consistent fashion
- Reparameterization – working in log space
- Adjusting MSSA parameters
- Avoid filling large gaps
ANCHORING

Holes are replaced with MSSA partial reconstruction
- Can yield bias if remaining components shift results

Instead
- Patch in differences relative to endpoints
- Can be additive or multiplicative
- One-sided holes need special treatment
REPARAMETERIZATION

MSSA hole filling is like a fixed point algorithm
- Trying to find points which match reconstruction
- Similar to constrained optimization

Apply classic optimization techniques
- Transform problem to eliminate constraints
- Work in log space if values must be positive
- Log space also helps to handle changes in magnitude

Fast drop-off of eigenvalues is evidence that working in log space is the right thing
ADJUSTING MSSA PARAMETERS

Many parameters to adjust

- Lag
- Max/Min number of EVs
- Max/Min percentage of sum of EVs
- Measure of convergence

Smoothing caused by fast drop-off of EVs

- Max/Min percentage ineffective
- Can add more EVs, but leads to instability
NEW RESULTS

After adjustments NAB:

NAB Senior USD: Angle/distance/MSSA spike detection, all SVs
Bad data detection
BAD DATA

How to handle bad data?

- Detect it
- Remove it
- In our case, replace it
BAD DATA DETECTION

Many algorithms
- Statistical – compare to statistical properties (like trailing SD)
- Data science – clustering
- Neural networks

References
- Outlier Detection Techniques, Kriegel, Kröger, and Zimek, [KKZ10]
- Detecting Local Outliers in Financial Time Series, Verhoeven and McAleer, [VM]
- Outlier Analysis, Aggarwal, [Agg13]
- Algorithms for Mining Distance-Based Outliers in Large Datasets, Knorr and Ng, [KN98]
- Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, Ben-Gal, [BG05]
- An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes, Franke et al., [Fra+10]
- A Survey of Outlier Detection Methodologies, Hodge and Austin, [HA04]
DIFFICULTIES

Regime changes and changing volatility
HYBRID APPROACH

Data science approach – Cluster analysis
- Angle-based
- Distance-based

Hybrid approach
- Run clustering on a windowed basis (in a neighborhood of each point)
- Combine MSSA with clustering
- Remove points using analysis, then put them back if MSSA reconstructs them close enough

Conservative approach
- Do both angle and distance-based combined with MSSA
- If both algorithms agree, then it’s really an anomaly
DISTANCE-BASED EXAMPLE
ANGLE-BASED EXAMPLE

Angle-based, no outlier:
ANGLE-BASED EXAMPLE

Angle-based outlier:
RESULTS

Filling of large holes

COP Senior USD: Hybrid Angle/Distance

01/09 03/09 05/09 07/09 09/09 11/09 01/10
-20
0
20
40
60
80
100
120
140
160

6mo
1yr
2yr
3yr
4yr
5yr
7yr
10yr
RESULTS

Ignoring regime changes

CHK Senior USD: Hybrid Angle/Distance

09/11 01/12 05/12 09/12 01/13 05/13

-200 0 200 400 600 800 1000 1200

6mo 1yr 2yr 3yr 4yr 5yr 7yr 10yr
RESULTS

Detecting and correcting bad data

JNY Senior USD: Hybrid Angle/Distance

01/15 03/15 05/15 07/15 09/15 11/15 01/16
0
0.5
1
1.5
2
2.5
10^4

6mo
1yr
2yr
3yr
4yr
5yr
7yr
10yr
Even works on CMO OASs!
Summary
Moral of the story

1. **Know** your data!
 - Bad data = bad results
 - Big data increases need for data cleaning
 - **Look** at your data!

2. **Know** its usage!
 - Cleaning must respect usage of data

3. Algorithms will often **not** work as advertised!
 - Your data can be different
 - Your data usage can be different

4. Expect **substantial** work modifying and adjusting algorithms
 - Tuning
 - Modifying algorithms
 - Combining algorithms
 - Performance must be inspected
Thank you!

Harvey J. Stein

hjstein@bloomberg.net

© 2018 Bloomberg Finance L.P. All rights reserved.
References
REFERENCES

REFERENCES

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>