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https://towardsdatascience.com/how-to-train-stylegan-to-generate-realistic-faces-d4afca48e705
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A detour --- Neural networks
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Image sources: medium.com; wikipedia.org
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A detour --- Neural networks
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A detour --- Neural networks and the universal approximation theorem

hidden layers

Neural networks can
approximate (almost) arbitrary
functions

Cybenko (1989) states that
any continuous function on a
compact domain can be
approximated with any

precision by an appropriate % f(x)=1+i_,k /-

neural network with sufficient e =i

WidTh Clﬂd depTh - . ,\./ (Positive gradient) /
egative gradient) E 19l
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(Partial, incomplete) History of Neural Networks

1763 Thinking In 1842 From numbers 1o 1943 Neurons go
numbers — Thomas poetry — Ada Lovelace artificial
Bayes

Waiter Pitts Waren McCulloch

Image source: https://aiartists.org/ai-timeline-art



(Partial, incomplete) History of Neural Networks

1943 Can a machine 1997 Man vs. machine: 2002 The first roboft for
thinke — Edmund fight of the 20th the home
Berkeley century

| An cuthorty sl the 11ory
| “medhanical bralne™ — bew ey “ink,
I ket thay do, ond whet they can mean in yowr Future.

Image source: https://aiartists.org/ai-timeline-art



The protein folding problem
Alphafold — A solution to a 50-year old grand challenge in biology

T1037 / 6vr4d T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

® Computational prediction



From traditional econometrics to deep neural networks

Traditional econometrics

B(R;) = R{G B.ONRn) — Ry)

We need more data

Deep Neural Networks

ImageNet Classification with Deep Convolutional Neural ...

by A Krizhevsky - Cited b 198 - Related articles
The neural network, wich has 60 million parameters and
hich are followed by mMax-Lg

0,000 neurons, consists of five

convolutional layers, SOmNg

research.google.com » large_deep_networks_nips2012 + POF

Large Scale Distributed Deep Network

by J Dean - Cited by 3150 - Related articles
we consider the problem of training a deep ne
thousands of CPU cores. We have developed a sollm

gl (2 M wWork.



A DAY IN DATA

DEMYSTIFIYING DATA UNITS

From the more familiar “bit” or ‘megabyte’,
baing uted to explain the matses of dats

larger units of measurement are more frequently

The exponential growth of data is undisputed, but the numbers behind this explosion - fuelled by internet of things and
the use of connected devcies - are hard to comprehend, particularly when locked at in the context of one day

500m

tweets are sent
wvery day

L=

294

bilion emails are sent

Rt e

320bn

amails to be cent
each day by 2021

306bn

emails to be tent
each day by 2020

of data will be created avery day by 2025

(-

Unit Value Size
bit Dorl 1/8 of a byte
tyto B bits 1 byt
kilobryte 1000 bytes 1,000 bytos
megabyte 10007 bytes 1,000,000 bytes
Eigabyte 1.000" bytes 1,000,000.000 bytes
torabyte 1.000" bytos 1000, 000 000,000 byvbes
potabyte 1000 bybos 1,000.000,000,000.000 bytes
ezabyto 1.000° bytes 1,000,000,000,000.000.000 bytes
ettatiyte 100G bytes 1,000,0:00,00:0,000,000,000,000 bytes
of dats created by yattabyte 1000 bytes 1,000,000.00:0.000.000,000,000,000 bytes
Facebook, including
A rwrtans W i i e sbbeaviation bar B, whde e sopercine B fepretent yten.
350m photos

hours of video

100“1 watch time

Ptk Rasarch

people use emails

messages sent over WhatsApp and
two billion minutes of voice and
video calls made

Fazateah

of data produced by a connected car

- Searches made

ACCUMULATED DIGITAL UNIVERSE OF DATA

4.472B

4478

a day from Google

Searche: made a day 5bn

é photos and videos are

shared on Instagram

Irabagram Blingas

to be generated from wearable
devices by 2020

dramats

RACONTELR



The need for synthetic data in 2021

Data is protected

Privacy and compliance limit
the use of banking/client data

Regulations prevent data
sharing

Clearance and approvals are
inefficient

The lack of sharing holds back
research

Historical data is limited

Certain events present limited
historical data

Limits statistical analysis and
inference

ML models are crippled by
small input sizes

Class imbalance

Class imbalance is high in rare-
event datasets

Datasets for fraud detection
are often imbalanced

ML and anomaly detection
algorithms fail on imbalanced
data



Generative Adversarial Networks intfroduced in 2014

00000060 pPp0OO0OCY QOO

T U T W U 2 R U A A

. Groundbreaking work by lan Goodfellow et al (2014) Rd2rd2d2222122222

3333333%3>3333333

- |t tried to address the following question: Given a set jfs’ g ;? : ;’ ‘;’ ; :_’ 4 2 ; ; d ;’_

S 3

of c.alq’rc (say, a set of human faces or Van G“qgh . L bbLlLbbbococobe el

paintings), can we generate data that are “similar”s T7929719 790122777

. Y3 788 3PP ITTI LS

« The authors hov? proposgd GAN,.WFLICh uses two $94G69469%99%49449 9

neural networks “competing against” each other to

obtain the desired outcome. o & I

* Yann LeCun has said “this (GAN) and the variations
are now the most interesting idea in the last 10 years
in ML, in my opinion.”

16



mgn mg,x E, [log(D(x))] + E. [log(1 — D(G(2)))]

Training set

Random
noise

i e

Generator

Image source: Google Images

Goodfellow, lan J., Jean Pouget-Abadie, M. Mirza, B. Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville and Yoshua Bengio. “Generative Adversarial

Networks.” ArXiv abs/1406.2661 (2014)

Fake imaae

z~N(QO, 1)
or
z~ U(-1,1)

Discriminator

Real image
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. D _) COSt ________ I
1
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A Detour — Nash Equilibrium
GANs and Nash Equilibrium

The GAN framework is a non-convex,
two-player, non-cooperative game with
continuous, high-dimensional
parameters, in which each player wants
to minimize its cost function.

The optimum of this process takes the
name of Nash Equilibrium.

GANs are typically trained

using gradient-descent techniques that
are designed to find the low value of

a cost function and not find the Nash
Equilibrium of a game

John Forbes Nash Jr.

whauleriier
w04 besirat
e ES RIKSBANK
Ar 908 mm/r atde prriset i

< ERONOAUSK VETENSKAP

geniensami @l i
Joli F_Nasho
Jol C Flaarsuorugi oot &mlmn( Selten
for deruas banbriptande-analys
ar /amm.(m iteorin ﬁ’r
" idke-Roo, f}t’rm‘um \ﬁ(‘(

What is a Nash Equilibrium?

No participant can gain by @
unilateral change of strategy
if the strategies of the others
remain unchanged



What else¢ A zoo of GANs - Different network architectures

Foundation
Generative Adversarial Network (GAN)
Deep Convolutional Generative Adversarial Network (DCGAN)
Extensions
Conditional Generative Adversarial Network (CGAN)
Information Maximizing Generative Adversarial Network (InfoGAN)
Auxiliary Classifier Generative Adversarial Network (AC-GAN)
Stacked Generative Adversarial Network (StackGAN)
Context Encoders
Pix2Pix
Advanced
Wasserstein Generative Adversarial Network (WGAN)
Cycle-Consistent Generative Adversarial Network (Cycle GAN)
Progressive Growing Generative Adversarial Network (Progressive GAN)
Style-Based Generative Adversarial Network (StyleGAN)
Big Generative Adversarial Network (BIigGAN)
Ensembles of GANs

Lucic, M., Karol Kurach, M. Michalski, S. Gelly and O. Bousquet. “Are GANs Created Equal? A Large-Scale
Study.” NeurlPS (2018).

https://aithub.com/hindupuravinash/the-gan-zoo



https://github.com/hindupuravinash/the-gan-zoo

What else¢ A zoo of GANs - Different network architectures

Five building blocks

« Generator network

« Discriminator network

« Loss functions

« Regularizations (weights, loss, gradient)
« Optimizers



Ongoing challenges in GAN fraining

Mode collapse Lack of proper
evaluation metrics
Model gets stuck in a mode No metric for fime series
1
Output loses diversity GANSs
Hard to evaluate GANs with
One mode | I Two modes | preCISlon
f(z) f(@) /\
ANYAN .
. ©deeplearning, - E_
Step 0 Step Sk Step 10k

! but see Conditional Sig-Wasserstein GANs for Time Series Generation, Ni et al 2020
Metz et al. 2017

Step 15k

Proposed solutions

New Loss functions
New Model architectures
Additional regularizations

step 20k Step 25k

Target



Challenges, tips and tricks when training GANSs

« Normalize the inputs

« A modified loss function:
(Min(1-D) -> max log(D))

« Sample from Gaussian
instead of uniform
distribution

Batch Normalization

hitps://qithub.com/soumith/ganhacks

Avoid Sparse Gradients

LeakyRelLU = good (in both
G and D)

For Downsampling, use:
Average Pooling, Conv2d +
stride

Use Soft and Noisy Labels

Use stability tricks from RL
Track failures early

D loss goes to 0O: failure
mode

Check norms of gradients: if
they are over 100, it
becomes difficult

When things are working, D
loss has low variance and
goes down over fime vs
having huge variance and
spiking

If loss of generator steadily
decreases, then it's fooling
D with garbage


https://github.com/soumith/ganhacks

GANSs In Finance

Table 1: GANs in finance research

Field

Application

Method

Time Series Forecasting

Portfolio Management

Time Series Generation

Fraud Detection

Market Prediction

Fine-Tuning of trading models

Portfolio Optimization

Synthetic time series generation and
Finance Data Augmentation

Detection of market manipulation

Detection of Credit Card Fraud

GAN-FD [9], ST-GAN [19],
MTSGAN [20]

C-GAN [10], MAS-GAN[21]

PAGAN[11], GAN-MP[22],
DAT-CGAN[23], CorrGAN[12]

TimeGAN[24], WGAN-GP[25],
FIN-GAN[3], Quant GAN[14],
RA-GAN[26], CDRAGAN][27],
SigcCWGAN[28], ST-GAN[19]
LSTM-GANJ13]

RWGAN[29], LSTM-GAN-2[30]

Eckerli, Osterrieder 2021



The key stylized facts of financial time series

« Absence of Volatility Clustering
autocorrelations Absence of Autocorrelations
 Fat-tailed distributions ™~ Conditional heavy tails
Heavy Tails A :

« Volatility clustering

Slow decay of autocorrelation in absolute returns

« Gain/loss asymmetry

) o Gain/loss asymmetry | Stﬂized o ._\_j__
« Aggregational Gaussianity

Leverage effect

Aggregational Gaussianity

Volume / Volatility correlation

Intermittency

Aysmmetry in time scales

Financial time-series data is non-stationary, non-markovian, with non-parametric distributions

https://radhakrishna.typepad.com/rks musings/2014/06/stylized-facts.html



https://radhakrishna.typepad.com/rks_musings/2014/06/stylized-facts.html

Results for financial-time series GANS

Quant-GAN! Conditional Sig- Wasserstein GAN with
©0 0000000000 @@ @ @ Output Layer Wgssers-l-ein GANSQ gerleﬂT peﬂO|Ty5
CROROROROROR Cy Hidden Layer Signo’rure of a pCITh |mproved Trgining of
0000000 T 00000 O Hden Layer Wasserstein GAN, which

N e N pushes the discriminator
) Q{l ) 4l C A1 %l o Lipschitz by gradient penalty

AANANN040 ...
RegGAN4 Self-Attention GANS TransGAN®

GAN with fransformer blocks
but without any convolutional

map
softmax self-attention | O ye rS
i feature maps (o)
Ixlconv o
h(x) Ej—l
Ixlcony - <|

I Wiese, M., Knobloch, R., Korn, R., & Kretschmer, P. (2019). Quant GANs: deep generation of financial time series. Quantitative Finance, 20, 1419 - 1440.
2Ni, H., Szpruch, L., Wiese, M., Lido, S., & Xiao, B. (2020). Conditional Sig-Wasserstein GANs for Time Series Generation. DecisionSciRN: Probabilistic Graphical
Models (Topic).

3Zhang, H., Goodfellow, I., Metaxas, D.N., & Odena, A. (2019). Self-Attention Generative Adversarial Networks. ICML.

4Cerbo, G.D., Hirsa, A., & Shayaan, A. (2021). Regularized Generative Adversarial Network. ArXiv, abs/2102.04593.

>Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved fraining of wasserstein gans. arXiv preprint arXiv:1704.00028.

¢Jiang, Y., Chang, S., & Wang, Z. (2021). Transgan: Two transformers can make one strong gan. arXiv preprint arXiv:2102.07074.

Regularized GAN: an architecture i
with two discriminators: one as a |
typical GAN, binary classifier, and
the other one as a score function




Structural Variants
DCGAN: Deep Convolutional GAN

SAGAN: self-attention GAN with dense
attention

BIG GAN deep: larger versions of SAGAN

YLGAN: your local GAN, with sparse
aftention

Transformer GAN: with fransformer blocks

See Hirsa, Fu, Osterrieder, 2021

GAN variants implemented for fime-series

Loss variants

Wasserstein GAN

WGAN with Gradient Penalty
LS GAN: least-squares

RAGAN: loss function improvement of
DCGAN with realistic factors

RA LS GAN: loss function improvement of
LSGAN with realistic factors

DRAGAN: deep regret analytic GAN,
a loss variant similar to WGAN GP

26



SAGAN

GAN based on convolutional neural networks, with an added self-attention mechanism
that improves learning on long-range dependencies

[ Input ] )
v lranspose 3
convolution Ix beomy attention
[ Dense & Reshape ] feature maps (x) - map
v . o . self-attention
[ Convolutional Block ] AR [1  ex i H feature maps (o)
| B |_] _H_ 5 & [T v(x)
| Convolutional Block | e IH
\4 - I el
[ Self-attention | ! > e I
[ Convolutional Block ] .
Input x: Batchsize (B) x Length (L) x Channels (C)

| Output | f(x),g(x).h(x): linear transformation of x

aftention(x) = softmax(f(x) x g(x)) x h(x)
Output v(x): linear transformation of attention(x)



SAGAN-GP for time series

GAN modified from SAGAN to fit the task of financial fime-series simulation

. Innovation: Combining self-attention mechanism with convolutional networks applied to
financial time-series simulation
2. Main differences from SAGAN
a. Dimension changed from Batchsize (B) x Width (W) x Height (H) x Channels (C)
for pictures to Batchsize (B) x Length (L) x Channels (C) for series
b. Use returns and prices as the real data, such that both the moments of returns and
long-range dependency of returns can be well-fitted by the GAN model
c. Use the loss function of WGAN-GP instead of the hinge loss in the original SAGAN

loss to improve fraining speed



S&P 500 SAGAN-GP, daily data
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S&P 500 SAGAN-GP, daily data
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TransGAN

Main features: Transformer Encoder
a. GAN with only tfransformer blocks and (1 x !
without any convolutional layers :
. . [ mp |
b. Especially good at fitting long-range J
dependencies and global characteristics I Norm ]
c. Consists of 3-5 transformer blocks
d. Each transformer block is made up by an 1
Multi-Head
attention layer and an MLP (fully- ;’tlﬂmiﬁﬁ
connected layers) 4_fJ
Norm

Patches

r Embedded ]




S&P 500 TransGAN, daily data
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S&P 500 TransGAN, daily data
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S&P 500 W-GAN with GP, daily data

Empirical PDF (linear-scale) Serial ACF
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S&P 500 W-GAN with GP, daily data
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S&P 500 W-GAN with GP, daily data
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S&P 500 W-GAN with GP, infraday data
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S&P 500 W-GAN with GP, infraday data
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S&P 500 W-GAN with GP, infraday data




S&P 500 W-GAN with GP, infraday data
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RegGAN'

The initial idea was to replicate artists’ cuts/ patterns utilizing deep convolutional generative
adversarial networks with connected components

From art to finance, the idea can be extended to preserve statistical properties in financial time series

ks
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L ]
‘2
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Ty
Y
L
p e
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ICerbo, G.D., Hirsa, A., & Shayaan, A. (2021). Regularized Generative Adversarial Network. ArXiv, abs/2102.04593.



RegGAN Loss function

minmax V' (G, Dy, Ds)
G Di,Ds ' '

= E, [log(D:(x))] +E.log(l — D1(G(2))) + E. log(1 — D3(G(2))))

instead of

min max {Ex~p,log D(X)] +Ez-p,|log(1 = D(G(Z)))]}

« Regularized GAN: an architecture with two discriminators: one as a typical GAN,
binary classifier, and the other one as a score function to control connected
components

« for controlling different statistical properties of time-series such as heavy-
tailedness, skewness and autocorrelation

« forinfroducing no-arbitrage constraints (e.g. for a volatility surface/ option prices)
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What nexte!

Generate synthetic
data

Apply Wasserstein GANs (and
improved versions) to

« Different asset classes (equity,
commodities, FX, ..)

« Different time-scales (daily to
intraday to high-frequency)

1 EU H2020 Fintech Topic: ICT-35-2018
EU H2020 COST CA19130: Fintech and Al in Finance

Use synthefic data to
solve financial
problems?

« Scenario generator

« Reinforcement Learning

« Train trading strategies
on artificial data

« Evaluate them on real
data
« Explainable Arfificial
Intelligence?

« Explain behaviour of
neural networks

« Accomodate
unforeseen data

Improve data
generation

 Learn desired features of the

data based on applications

* Privacy considerations

« Transfer learning

2 Hirsa, Ali, Joerg Osterrieder, Branka Hadjji Misheva, Wenxin Cao, Yiwen Fu, Hanze Sun and K. Wong.
“The VIX index under scrutiny of machine learning techniques and neural networks.” (2021).

3 Misheva, Branka Hadiji, Joerg Osterrieder, Ali Hirsa, Onkar P. Kulkarni and S. Lin. “Explainable Al in
Credit Risk Management.” ArXiv abs/2103.00949 (2021)



Conclusion and outlook

« Generating synthetic financial data is achievable and viable with the use of GANs
« Use of synthetic data is gaining traction and new applications

 Stabilizing fraining is still open to improvements

« Lack of unified quantitative metric still a problem

A new GAN, based on SAGAN, to generate synthetic financial data, was proposed

« RegGAN: New generafion of GANs; Use a second discriminator as a classifier; for
controlling different statistical properties of fime-series such as heavy-tailedness, skewness
and autocorrelation, or for infroducing no-arbitrage constraints (e.g. for a vola surface)

« Qutlook: Apply GANs in the frequency-domain, combine Quant-GAN with Reg-GAN
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