eXplainable AI in Credit Risk Management

Branka Hadji Misheva

ZHAW Zurich University of Applied Sciences
NOTE: Contributors

Dr. Branka Hadji Misheva & Prof. Dr. Jörg Osterrieder
ZHAW, School of Engineering

Prof. Dr. Ali Hirsa,
Columbia University

Alex Raita & Phillip Kim,
Columbia University

Onkar Kulkarni & Stephen Fung Lin
Columbia University
AGENDA

The Need for XAI
Deploying Explainability
XAI in Credit Risk Management
The Need for XAI
Hype vs Real?

Al in finance?

Hype Cycle for Emerging Technologies, 2020

Expectations

Innovation Trigger
Peak of Inflated Expectations
Trough of Disillusionment
Slope of Enlightenment
Plateau of Productivity

Time

Plateau will be reached:
- less than 2 years
- 2 to 5 years
- 5 to 10 years
- more than 10 years
- obsolete before plateau

As of July 2020

gartner.com/SmarterWithGartner

Source: Gartner
© 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hypercycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S.
Hype vs Real?

AI in finance?

Well ...

People: *fearing* AI takeover

AI:

VOLUMES OF DATA

Where is the progress?

QUANTITATIVE PROBLEMS

AI in practice is difficult

Cat (98%)
Hype vs Real?

AI in finance?

VOLUMES OF DATA

QUANTITATIVE PROBLEMS

Where is the progress?

Well ...

KEEP CALM AND COMPLY WITH GDPR
Explainability is the name of the game!
The Need for **eXplainable AI**

It is not clear how variables are being combined to make predictions!
Why do we **NEED** this?

- Trust in models is **key**!

Image source: medium.com
Why do we **NEED** this?

It has found some snow!
Deploying Explainability
CREDIT RISK Management

Loan size

Income
What about non-linear relationships? Still interpretable!

- Income > 70K
- Loan size > 15000
N-dimensions and **HIGH COMPLEXITY**

Image source: [wikipedia](https://en.wikipedia.org)

Image source: towardsdatascience.com
FEATURE IMPORTANCE

No info on the relationship!

Image source: opendatascience.com

Image source: stackoverflow.com
POST-HOC Explainability

• For some ML models, post-hoc explainability is required!

• Post-hoc explainability techniques → understandable information about how an already developed model produces its predictions for any given input!

• We distinguish between two approaches:
 • those that are designed for their application to any ML models; and
 • those that are designed for a specific ML model and thus, can not be directly extrapolated to any other learner.
POST-HOC Explainability

- For some ML models, post-hoc explainability is required!

- Post-hoc explainability techniques → understandable information about how an already developed model produces its predictions for any given input!

- We distinguish between two approaches:
 - those that are designed for their application to any ML models; and
 - those that are designed for a specific ML model and thus, can not be directly extrapolated to any other learner.
Local Interpretable Model-agnostic Explanations

LIME explains the prediction of any machine learning classifier by learning an interpretable model locally around the prediction.

Image source: Ribeiro et al. (2016)
LIME: Details

• The explanation provided by LIME for each observation:

\[\xi(x) = \arg\min_{g \in G} L(f, g, \pi_x) + \Omega(g) \]

where G is the class of potentially interpretable models (i.e. linear models)
g \in G: An explanation considered as a model
f: \mathbb{R}^d \rightarrow \mathbb{R}: The main classifier being explained
\pi_x(z): The proximity measure of an instance z from x
\Omega(g) - Complexity parameter (e.g. number of features)

• The goal is to minimize the locality aware loss L without making any assumptions about f, since a key property of LIME is that it is model agnostic.

• L is the measure of how unfaithful g is in approximating f in the locality defined by \pi_x.
SHAPLEY Values

• The Shapley value is the average marginal contribution of a feature value across all possible coalitions.

The contribution of the cat-banned is -10K!

This greatly depends on our random pick!

We repeat the sampling step and average the contribution!

Image source: christophm.github.io
Shapley Values: DETAILS

• Given a model

\[f(x_1, x_2, x_3 ... x_n) \]

with feature 1 to \(n \) being payers in a game in which the payoff \(v \) is the measure of importance of the subset.

• Marginal contribution \(\Delta_v(i, S) \) of a feature \(i \):

\[\Delta_v(i, S) = v(S \cup i) - v(S) \]

• Let \(\Pi \) be the set of permutations of the integers up to \(N \), and given \(\pi \in \Pi \) let \(S_{i,\pi} = \{j: \pi(j) < \)
XAI in Credit Risk Management
Wider adoption of AI-based use cases in finance

Match explainability needs of stakeholders with the XAI methods

Performance of XAI methods in view of the unique features of financial data

What is the best way to bring those explanations to different stakeholders in the financial world?

XAI Research

XAI research in FINANCE

Deployment

Productivity
Use Case: **OBJECTIVES**

Context: Credit Risk Management

To explore the utility of both SHAP and LIME frameworks in the context of credit risk management

- Stability and robustness of explanations
- Human-centric and mathematical issues
Use Case: **DATA**

- 2GB of data and containing information [160 features] on **2.2 million loan contracts**

 - Processing:
 - In order to deal with the missing values, in the first instance, all columns which had "NaN" values in more then 90% of the records, were cancelled.
 - Highly correlated features were also eliminated from the input space
 - One hot encoding and combining levels
 - Balanced target
Use Case: FEATURE SELECTION

Original features:

<table>
<thead>
<tr>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Shadow features:

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

Importance score:

<table>
<thead>
<tr>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.01</td>
<td>0.85</td>
<td>0.92</td>
<td>0.001</td>
<td>0.02</td>
<td>0.41</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Hit:

- ✔
- ✔
- ✔

`> fit = randomForest(y~x, data = trainingset, maxnodes = 10, ntree = 500)`
Use Case: PERFORMANCE

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter Space</th>
<th>Performance on Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression</td>
<td><code>penalty='l2' solver='lbfgs'</code></td>
<td>Accuracy: 0.9978 , Precision: 0.9960</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall: 0.9932, F1 score: 0.9946</td>
</tr>
<tr>
<td>XGBOOST</td>
<td>`scoring = 'roc_auc', cv = 5, n_jobs = -1, verbose = 3, n_estimators = 100,</td>
<td>Accuracy: 0.9971, Precision: 1.00</td>
</tr>
<tr>
<td></td>
<td><code>max_depths = 4</code></td>
<td>Recall: 0.97, F1 score: 0.99</td>
</tr>
<tr>
<td>Random Forest</td>
<td><code>n_estimators: 500, max_depth: 20</code></td>
<td>Accuracy: 0.9932, Precision: 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall: 0.96, F1 score: 0.98</td>
</tr>
<tr>
<td>SVM</td>
<td><code>gamma='auto', C=1.0, kernel='rbf', probability=False/True</code></td>
<td>Accuracy: 0.99487, Precision: 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall: 0.96, F1 score: 0.98</td>
</tr>
<tr>
<td>Neural Networks</td>
<td><code>n_hidden = 2, neurons = [35, 35], activations = RelU, sigmoid</code></td>
<td>Accuracy: 0.9998, Precision: 0.9999</td>
</tr>
<tr>
<td></td>
<td><code>loss = binary_crossentropy , Optimizer = adam</code></td>
<td>Recall: 0.9985, F1 score: 0.9992</td>
</tr>
</tbody>
</table>
Overall feature importance

Figure. SHAP value for RF Classifier [2000 loan contracts, TreeExplainer]

Ground Truth: Paid

Most important features that drive the output are:
1) Total payments
2) Loan amount
3) Instalments
4) …
HUMAN-CENTRIC Issues

The main barriers for wider adoption of ML-based solution in finance;

The need for explainable and interpretable ML;

Specific explainability needs and XAI methods

- Explanations for model developers
- Could provide value for end users as well – however, counterfactual explanations preferred
- Visualization not suited for end users

Interviews carried out with various stakeholders.
TECHNICAL Issues

- One-point access to data

- Issue with the **different estimation procedures**
 - the exact computation of the Shapley value is computationally intensive
 - Feature selection can be crucial
 - The choice of features that count as players can affect the resulting explanations

- Only few model-specific solutions for the computational complexity
ROBUSTNESS & STABILITY of Explanations

- Similar data points/loan contracts should have similar outputs and similar explanations.
- Explanations across different XAI methods should be similar for similar data points.
ROBUSTNESS & STABILITY of Explanations

Similar data points/loan contracts should have similar outputs and similar explanations.

Explanations across different XAI methods should be similar for similar data points.
Stability of Explanations though **GRAPH THEORY**

- Use concepts from **graph theory** to investigate whether similar loan contracts have obtained similar explanations.

- We exploit information derived from the numerical features collected in a vector \(x_n \) representing the different loan contacts \(n \).

- We define a metric **D - standardized Euclidean distance** between each pair \((x_j; y_j)\) loan feature vectors.

\[
D_{xy} = \sqrt{\sum_{j=1}^{J} \left(\frac{x_j}{s_j} - \frac{y_j}{s_j} \right)^2}
\]
The Minimal Spanning Tree

• We derive the **Minimal Spanning Tree (MST)** representation of the loan contracts

• For a **Graph** G, the goal is to find a tree T which is a spanning subgraph of G, i.e. every node is included to at least one edge of T and has minimum total weight.

 - Pick some arbitrary start node u. Initialize $T = u$
 - At each step add the lowest-weight edge to T (the lowest-weight edge that has exactly one node in T and one node not in T);
 - Stop when T spans all the nodes.

Image source: [wikipedia](https://en.wikipedia.org/wiki/Minimal_spanning_tree)
Stability of Explanations through **GRAPH THEORY**

Figure. MST tree representation of 100 random data points. Coloring based on the top explanatory feature [green = “Number of instalment accounts opened in past 12 months”; grey = “Months since most recent instalment accounts opened”; blue = “Grade”]

Figure. MST tree representation of 100 random data points. Coloring based on the top explanatory feature [green = “Grade”, blue = “Percent of trades never delinquent”]
Stability of Explanations though **GRAPH THEORY**

Explanation Difference

The Explanation Difference formula takes the top n features of two points, adds up the squared difference of the contributions of each feature in common, and for each feature that is not common, adds up the square of each contribution then finally take the square root of the sum.

Similarity [Standardized Euclidean Distance]

Figure. Explanation Difference vs Spatial Distance for $ref_i = 1000$, $n = 100$ for 5, 10, and 20 Features.

The Explanation Difference formula takes the top n features of two points, adds up the squared difference of the contributions of each feature in common, and for each feature that is not common, adds up the square of each contribution then finally take the square root of the sum.
ROBUSTNESS & STABILITY of Explanations

Similar data points/loan contracts should have similar outputs and similar explanations.

Explanations across different XAI methods should be similar for similar data points.
Stability across XAI METHODS

Prediction probabilities
- Fully Paid: 0.77
- Default: 0.23

Fully Paid
- inq_last_6mths <= 0.00: 0.03
- open_acc_6m <= 0.00: 0.03
- mo_sin_rcnt_rev_tl_op: 0.03
- 3.00 < grade <= 4.00: 0.02
- open_rv_12m <= 0.11: 0.02

Default

Ground Truth: Paid

Ground Truth: Paid

Feature	Value
inq_last_6mths | 0.00
open_acc_6m | 0.00
mo_sin_rcnt_rev_tl_op | 23.00
grade | 4.00
open_rv_12m | 0.00
CONCLUSION Remarks - I

- The **lack of algorithmic transparency is one of the main barriers** for the wider adoption of AI-based solutions in credit risk management

- **Research on XAI applications in finance remain limited**

- **Two-fold objective** of the work:
 - human-centric and mathematical issues related with the implementation of XAI methods in finance, and
 - explore the stability and robustness of explanations provided

- **Human-centric issues** → we find that that XAI methods are suited to the needs of ML engineers
CONCLUSION Remarks - II

• Deployment → various problems arise from the estimation procedures that are in use for some of the post-hoc explainability techniques
 • This in turn affect their practical utility

• Stability and robustness:
 • State-of-art methods offer certain level of stability
 • Similar loan contracts obtain similar explanations
 • Explanations across XAI methods for similar loans are consistent

• Future work: bringing XAI literature closer to industry