Abstract

We develop a unified framework for fast large-scale portfolio optimization with shrinkage and regularization for different objectives such as minimum variance, mean-variance, and maximum Sharpe ratio with various constraints on the portfolio weights. For all of the optimization problems, we derive the corresponding quadratic programming problems and implement them in an open-source Python library. We use the proposed framework to evaluate the out-of-sample portfolio performance of popular covariance matrix estimators such as sample covariance matrix, linear and nonlinear shrinkage estimators, and the covariance matrix from the instrumental principal component analysis (IPCA). We use 65 years of monthly returns from (on average) 585 largest companies in the US market, and 94 monthly firm-specific characteristics for the IPCA model. We show that the regularization of the portfolio norms greatly benefits the performance of the IPCA model in portfolio optimization, resulting in outperformance linear and nonlinear shrinkage estimators even under realistic constraints on the portfolio norms. The corresponding code with the implementation in Python is available online at GitHub.

Portfolio Optimization Framework

The general theory of portfolio optimization, as described in a seminal work by [8], summarizes the trade-off between risk and investment return using the portfolio’s mean and variance. The objective function is

\[
W = \arg \min_{W} w' \Sigma w,
\]

where \(W = \{ w \in \mathbb{R}^N : w' \mu \geq \alpha_0 \text{ and } w' 1 = 1 \} \), is a set of constraints on the portfolio weights which correspond to a fully invested portfolio with the expected return above the \(\alpha_0 \) threshold. Get the close-form in-sample frontier,

\[
W = \arg \min_{W} w' \Sigma w,
\]

\(\text{Maximize Sharpe Ratio Portfolio} \)

\[
W = \arg \min_{W} \left(w' \mu - \gamma \right) / \sqrt{w' \Sigma w},
\]

where \(W = \{ w' \mu = 1, w' \Sigma w = 1 \} \) in our portfolio optimization framework, we translate portfolio problems into standard quadratic programming (QP) problems. Subsequently, we employ the OSQP solver to tackle them.

Portfolio Constraints

Introducing specific constraints for each portfolio optimization function, leading to various formulations:

\(\ell_2^2 \text{ Penalized Portfolio Norms: } w' \Sigma w + \lambda |w| \)

\(\ell_1 \text{ Penalized Portfolio Norms: } w' \Sigma w + \lambda |w| \)

\(\ell_2 \text{ Penalized Portfolio Norms: } w' \Sigma w + \lambda |w|^2 \)

\(\ell_2^2 \text{ Penalized Portfolio Norms: } w' \Sigma w + \lambda |w|^2 \)

The feasible set of portfolio weights, \(V \), typically encompasses additional constraints. For example:

\(\text{Long only: } W = \{ w \in \mathbb{R}^N : w' 1 = 1 \text{ and } w_i \geq 0 \forall i \} \)

Additionally, our model incorporates various constraints for robust portfolio management, including benchmark exposure constraints, tracking error constraints, risk factor constraints, as well as linear and quadratic constraints.

Covariance Matrix Estimation

In Markowitz’s portfolio theory, the mean vector (\(\mu \)) and covariance matrix (\(\Sigma \)) are presumed known. Practically, they require estimation from data, typically via historical sample mean and covariance under an iid assumption. Our portfolio optimization deploys three covariance matrix estimators:

\(\text{Classical linear shrinkage covariance matrix estimator [6] defined as } \Sigma = (1 - \delta) \hat{\Sigma} + \delta \Omega \)

\(\text{Nonlinear shrinkage covariance matrix estimator [5] defined as } \Sigma = (1 - \delta) \hat{\Sigma} + \delta \Omega \)

\(\text{IPCA shrinkage } \hat{\Sigma}_{1:1} = Z'_t \Gamma Z_t + \delta \Omega \) which leads to the shrinkage covariance matrix \(\hat{\Sigma}_{1:1} = Z'_t \Gamma Z_t + \delta \Omega \), where \(\Gamma = \text{diag}(\text{var}(r_{t,1})), \ldots, \text{var}(r_{t,N})) \) is the diagonal matrix for the variance of the asset returns. We will compare \(\hat{\Sigma}_{1:1} \), with the two aforementioned shrinkage covariance matrix estimators and the sample covariance matrix estimator in our portfolio analysis below using our QP framework.

Empirical Analysis

\(\text{Model Implementation: Rolling window on maximum Sharpe ratio portfolio with the sample mean estimator and IPCA covariance matrix estimator.} \)

\(\text{CRSP Data: From 1963 to 2013 monthly data. The number of assets ranges from 329 to 931 symbols every month, with an average number of 585 stocks.} \)

Conclusions and Extensions

\(\text{Unified Framework Introduction: This paper presents a unified framework for portfolio optimization, utilizing quadratic programming. This framework greatly enhances computational speed and accuracy, proving especially advantageous in large-scale portfolio problems.} \)

\(\text{IPCA Factor Model Performance: When incorporated into a regularized portfolio optimization problem, the IPCA factor model demonstrates substantial improvements in portfolio performance, especially under long-short constraints.} \)

\(\text{Future Research Directions: Future studies will apply our model to managed portfolios rather than individual stocks, with the aim of achieving a more stable mean estimator [7, 1, 3, 4, 2].} \)

References:

