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Abstract
We develop a unified framework for fast large-scale portfolio optimization with shrinkage and regu-
larization for different objectives such as minimum variance, mean-variance, and maximum Sharpe
ratio with various constraints on the portfolio weights. For all of the optimization problems, we derive
the corresponding quadratic programming problems and implement them in an open-source Python
library. We use the proposed framework to evaluate the out-of-sample portfolio performance of pop-
ular covariance matrix estimators such as sample covariance matrix, linear and nonlinear shrinkage
estimators, and the covariance matrix from the instrumented principal component analysis (IPCA).
We use 65 years of monthly returns from (on average) 585 largest companies in the US market, and
94 monthly firm-specific characteristics for the IPCA model. We show that the regularization of the
portfolio norms greatly benefits the performance of the IPCA model in portfolio optimization, resulting
in outperformance linear and nonlinear shrinkage estimators even under realistic constraints on the
portfolio weights. The corresponding code with the implementation in Python is available online at
�https://github.com/PawPol/PyPortOpt.

Portfolio Optimization Framework

The general theory of portfolio optimization, as introduced in a seminal work by [8], summarizes the
trade-off between risk and investment return using the portfolio’s mean and variance. The objective
function is

w∗ = arg min
w∈W

1

2
w′Σw,

where W :=
{
w ∈ RN : w′µ ≥ α0 and w′1N = 1

}
, is a set of constraints on

the portfolio weights which correspond to a fully invested portfolio with the ex-
pected return above the α0 threshold. Get the close-form in-sample frontier,

The above
graphical illustration represents the in-sample efficient frontier. It underscores that in a
high-dimensional setup, without appropriate portfolio optimization, achieving an optimal
risk-reward profile is far-fetched. Even the often-touted 1/N portfolio, celebrated for its naive
diversification and performance, falls short in this context.

Portfolio Objective Function

Depending on the specific optimization goal, we formulate various objective functions.
• Mean-Variance Optimization with Risk-Free Asset

w∗ = arg min
w′∈W

1

2
w′Σw,

where W =
{
w ∈ RN : w′µ + (1−w′1N )rf = α0

}
.

• Maximum Sharpe Ratio Portfolio

arg min
w∈W

√
γw′Σwγ

γw′(µ− rf1N )
⇐⇒ arg min

[w̃,γ]′∈W̃
w̃′Σw̃,

where W̃ =
{
[w̃, γ]′ ∈ RN+1 : 1 = w̃′(µ− rf1N ),1′Nw̃ = γ, w̃ ≥ 0

}
.

In our portfolio optimization framework, we translate portfolio problems into standard quadratic pro-
gramming (QP) problems. Subsequently, we employ the OSQP solver to tackle them.

Portfolio Constraints
Introducing specific constraints for each portfolio objective function, leading to various formulations:

• ℓ22 Penalized Portfolio Norms: w∗ = argminw∈W w′Σw + λ ∥w∥22
• ℓ1 Penalized Portfolio Norms: w∗ = argminw∈W w′Σw + λ ∥w∥1
• ℓ1+ℓ22 Penalized Portfolio Norms: w∗ = argminw∈W w′Σw + λ1 ∥w∥1 + λ2 ∥w∥22 .

The feasible set of portfolio weights, W , typically encompasses additional constraints. For example:

• Long only: W :=
{
w ∈ RN : w′1N = 1 and wi ≥ 0,∀i

}
.

• Asset specific holding constraints: W :=
{
w ∈ RN : w′1N = 1 and Li ≤ wi ≤ Ui,∀i

}
,

Additionally, our model incorporates various constraints for robust portfolio management, including
benchmark exposure constraints, tracking error constraints, risk factor constraints, as well as linear
and quadratic constraints.

Covariance Matrix Estimation

In Markowitz’s portfolio theory, the mean vector (µ) and covariance matrix (Σ) are presumed known.
Practically, they require estimation from data, typically via historical sample mean and covariance
under an iid assumption. Our portfolio optimization deploys three covariance matrix estimators:

• Classical linear shrinkage covariance matrix estimator [6] defined as Σ̂ = δ̂F̂ + (1− δ̂)S.

• Nonlinear shrinkage covariance matrix estimator from [5]. Σ̂t := Ut∆̂tU
′
t.

• IPCA shrinkage rt+1 = Z′
tΓβft+1 + ϵ∗t+1, which leads to the shrinkage covariance matrix

Σ̂rt+1 = ZtΓ̂βcov(F̂)Γ̂′
βZ

′
t + D̂, where D̂ = diag(cov(rt+1 − Z′

tΓ̂β f̂t+1)) is the diagonal matrix

for the covariance of the residuals. We will compare Σ̂rt+1 with the two aforementioned shrink-
age covariance matrix estimators and the sample covariance matrix estimator in our portfolio
analysis below using our QP framework.

Empirical Analysis

• Model Implementation: Rolling window on maximum Sharpe ratio portfolio with the sample
mean estimator and the IPCA covariance matrix estimator.

arg min
w∈W

−
w′µ− rf√

w′Σw
+ δ1

1

w′µ− rf
∥w∥1 + δ2

1

(w′µ− rf )
2
∥w∥22 .

• CRSP Data: From 1957 to 2021 monthly data. The number of assets ranges from 329 to 931
symbols every month, with an average number of 585 stocks.

Sharpe ra-
tio portfolio with IPCA estimates of the covariance matrix performs much better than all the
benchmark models.

• Result: Apply 30 years rolling window with one month ahead for out-of-sample result.

Conclusions and Extensions

• Unified Framework Introduction: This paper presents a unified framework for portfolio op-
timization, utilizing quadratic programming. This framework greatly enhances computational
speed and accuracy, proving especially advantageous in large-scale portfolio problems.

• IPCA Factor Model Performance: When incorporated into a regularized portfolio optimization
problem, the IPCA factor model demonstrates substantial improvements in portfolio perfor-
mance, especially under long-short constraints.

• Future Research Directions: Future studies will apply our model to managed portfolios rather
than individual stocks, with the aim of achieving a more stable mean estimator [7, 1, 3, 4, 2].
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