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Before the moment when Artificial Intelligence was applied to fraud 
detection, loan businesses usually hired employers to manually 
check customers’ static information–citizenship, age, employment, 
and income. With the high development of the Internet, more and 
more online lending took place. The involvement of AI in this topic 
would help to collect dynamic information like web page sequences 
and make predictions in a more efficient way. 

In our project, we will outline the use of sequential time series data 
and basic information data to determine unacceptable loan 
applications. An unacceptable application is classified in two ways: a 
fraudulent application, or an application where the applicant is not 
creditworthy. Sequential data is classified as data collected from 
users completing loan applications where their time spent on the 
application was tracked. The basic data tracked if the client was 
new, how many days overdue the application was, and the 
submission time of the application. 

The methods used to determine these two outcomes were derived 
using various graph embedding and sequential embedding 
techniques. Here, we will provide a comprehensive analysis and 
comparison of how different graph embedding models can find 
potential group and individual risks, and automatically extract 
features from loan application data. Also, we will develop machine 
learning and deep learning models to extract features from 
sequential data and compared their effectiveness for fraud detection. 

Future Works

• The provided raw dataset comes from CraiditX’s internal client data and consists of 35,373 loan 
applications. Each line of the raw data text file contains the whole or partial data for an individual 
application in the format shown in the figure, and all the data are already encoded.

• For a given application, its related device may be shared or have contacts or calls connections with 
another application, thus creating the basis for network analysis. 

• Our dataset is highly imbalanced, where only 3% of the observations were labeled as fraudulent vs. 
97% were labeled as non-fraudulent.

Graph Convolutional 
Networks (GCN)
• The work is based on a model by Kipf and Welling. Such problems 

as classifying nodes in a graph can be framed as graph-based semi-
supervised learning.

• We need two input matrices built from the raw data: the feature 
matrix and the adjacent matrix. 

• As for the dataset we used for this model, we only keep the records 
that are not rejected, which are 14149 in total. Since if a record is 
rejected, there is no chance for it to be overdue.

• We generated two models, and we simply call them model 1 and 
model 2. Model 2 is an improved GCN model comparing with model 
1. Here are the differences between the two:

Semi-supervised Graph Attentive Network (SemiGNN)
• SemiGNN by Wang et al. learns weightings of each dataset dynamically instead of manually setting weights for different 

datasets in the GCN model.
• SemiGNN model is performant on imbalanced datasets since we found our dataset is highly imbalanced.
• SemiGNN aggregates across different datasets (“views”). Variables in each dataset are translated into adjacency matrices 

that form a multi-view graph.
• The GCN model and the SemiGNN model share the same feature matrix, but the their adjacent matrices are different. A very 

straightforward difference is that the adjacency matrix for GCN model is a single matrix, and for the SemiGNN model, we 
generate multiple views according to different variables.

• We need to apply the sampling methods to generate sample view matrices for evaluation purpose, because the original 
adjacent matrices(views) are too large and the computation is impossible. Here we used 3-hop Random Walk sampling 
method.

Temporal Graph Analysis, 
MIDAS & MIDAS-R
• Microcluster-Based Detector of Anomalies in 

Edge Streams (MIDAS) is an anomaly 
detection method that identifies anomalies 
based on microclusters or sudden groups of 
suspiciously similar edges using constant time 
and memory. The method is based on an 
assumption that fraudulent activities occur in 
microclusters of suspiciously similar edges.

• MIDAS-R adds time flexibility and slightly 
different anomalous node scores to its 
algorithm. MIDAS-R allows the past edges to 
be incorporated into fraud detection of the 
most current time by adjusting the weights of 
the edges.

• MIDAS and MIDAS-R were both based on 
homogeneous graph.

Inductive Graph Models: GraphSAGE & 
FI-GRL
• Both models could be utilized to build a heterogeneous graph 

network.
• GraphSAGE learns aggregator functions, which would induce 

the embedding of a new node given its features and 
neighborhood. While algorithms like MIDAS, it needs to 
update the previous data structure for the new edge and 
retrieve updated counts.

• Fast Inductive Graph Representation Learning (FI-GRL), 
proposed by Jiang et al., is a fast and weightings of flexible 
framework that can preserve important graph topological 
information with provable theoretical guarantees and can be 
naturally generalized to unseen nodes. There are two stages 
in this framework: decoupling and feature extraction.

• Feature Embedding: to preserve the temporal feature of the 
graph, we deployed a fixed-length sliding window and pre-
determined step size. We finally passed the embeddings into 
an XGBoost classifier to perform binary classification.

The difference in the feature matrix.

The difference in the adjacent matrix.

GCN with Extra Features
• One potential way to improve it is to try analyzing subgraphs. The main idea is to further analyze the characteristics inside a small community by applying the Personalized Pagerank

Algorithm and Dense Graph Community Detection Algorithm, and import our results to GCN model as new features. 

Four New Sampling Techniques
• Random Walk with Restart, Random Jump Sampling, PageRank Node Sampling, Random Degree Node Sampling.
• We also evaluate these different sampling methods on GCN model.

GraphSAGE
sample and 
aggregate 
approach.

Intuition of FI-GRL.

FI-GRL 
framework.

• The data consists of 230,000 records, 200,000 of which is used for training and 30,000 is used for testing. 
• The features are limited. The sequential features are: the name of the current page (categorical), the start time a user 

visited the page, the end time we visited, process ID, and session ID. Non sequential features consist of number of 
days the loan was overdue, new applicant (or not), submission date time, and default (categorical). 

• The training dataset is a labeled set with each entry denoting if the application was a default or not, while the testing set
is unlabeled. 

• The data is in json format with two elements for each entry: Order Info and Data. Order Info is a description about the 
application whereas Data is the information recorded in the application. 

• The dataset is highly imbalanced.

Key, value pairs for the Order Info application data. 

Key, value pairs for the Data 
in the application data. 

Baseline Models 
• Unsupervised learning classification algorithms.
• Weighted Random Forest, is a decision tree model that 

incorporates tree-level weights to emphasize more accurate 
trees in prediction and calculation of variable importance.

• KNN model, which is a non-parametric supervised learning 
model where the predicted data point is classified according 
to the class most common to its k nearest neighbors. KNN 
can be useful in predicting transitions between different 
pages in our page sequence data. If the page sequence 
order is abnormal, then that may be a predictor of fraudulent 
application activity. 

• Bi-LSTM model is composed of two independent RNNs, one 
with information flowing forward and one flowing backwards. 
The Bi-LSTM model used three bi-directional LSTM layers 
using the page sequences. Each layer had a different 
encoding technique; Markov Transition Field (MTF), 
Convolutional Neural Network (CNN), or plain vanilla LSTM. 

Random forest classifier 
uses majority voting of the 
predictions made by 
randomly created decision 
trees to make the final 
predictions. 

Deep Learning Methods  
• We focused on deep learning methods with LSTM, RNN, CNN, and 

autoencoders.
• For data preprocessing, One Hot Encoding helped turn the categorical 

data into a binary-like format to be processed by a machine learning 
algorithm more efficiently. We gravitated towards a Neural Network with 
LSTM layers, Bi-LSTM layers, and LSTM with attention layers.

• A CNN model was created with MTF and Gramian Angular Field (GAF), 
another type of time series to image transformation, which helped turn 
the sequence data into image data to feed the model. 

• LSTM and CNN with autoencoders, another method of encoding data for 
more efficient model consumption.

• An important part of using image classification models is to structure the 
data into an image-like data structure. 

A Bi-Directional LSTM 
model with information 
flowing forward and 
backwards through 
activation layers. 

Transformer Models 
• We focused on how to improve performance from a feature extraction and model optimization perspective. The main focuses 

were Word2Vec embedding and Transformer models with Multi-Head Attention mechanisms. We also introduced a new 
dataset of 30,000 entries with higher fraud occurrences. We called this dataset “low income” and the original dataset was called
“high income”. 

• Word2Vec can map words to a vector of real numbers which can then be processed by a deep learning algorithm. 
• A Transformer model with multi-head attention was used to link the page type embeddings with page stay time. Both are time-

series features crucial for research on the customer behaviors before submitting a loan application. 
• The Transformer model works in two parts: an encoder and a decoder. The word2vec embedded data is passed through N 

encoder layers consisting of a feed forward network and a layer normalization. The data is then decoded with another feed 
forward network and multi-layer attention. 

The 
Architecture 
of Attention-
based LSTM. 

Transformer model with 
encoder and decoder with 
multi-head attention.

Multi-Head Attention 
consists of linear layers 
split into heads, 
followed by scaled dot-
product attention, 
concatenation of heads 
and a final linear layer.

Feature Engineering 
• To the CNN we added Conv2D, a layer where 

a filter is applied to the elements of a matrix 
and results in an output of tensors that can be 
better processed by the CNN, and LSTM 
layers and achieved better results. 

• In order to determine relationships between 
variables and developed it, we also figured 
out how to optimize the number of categories 
by splitting continuous data variably with 
weights as opposed to uniformly. 

A CNN model 
with LSTM 
layers. 

NLP
• BERT is a language modeling and sentence prediction tool mainly used in 

NLP, the continued approach of the problem as an NLP one makes sense 
because the sequential time data is analogous to words and sentences. 

• Compared to traditional embedding models, which read texts either from left-
to-right or right-to-left, BERT reads the entire sentence at once and is able 
to understand the full context of the words. 

• We tried a new feature extraction technique, Sequence Graph Transform 
(SGT). SGT can extract a varying amount of short-to long-term 
dependencies without increasing computations. SGT features can yield 
significantly superior results in sequence clustering and classification.

• To maximize the efficacy of SGT, we categorized the data into bins and 
buckets for better model performance. PCA was an effective way to explain 
most of the variance of the model while keeping only the most important 
features. 

• We fine tuned the dictionary created by the SGT and ran the CatBoost
model, which enables gradient boosting on decision trees.

A BERT masked 
language model. 

SGT feature 
extraction. 

• AUC score of ROC curve. AUC calculates the area under the ROC 
curve which plots the true positive rates and false positive rates at a 
range of thresholds from 0 to 1. The thresholds represent different 
prediction cutoffs for classification of the response variable to a 0 (non-
fraud) or a 1 (fraud). The closer the AUC is to 1, the better the model 
is. 

• KS score. KS score gives an assessment of a distance of two 
samples. Here our KS score = TPR - FPR. Therefore, the closer the 
KS score to 1, the better the model is. 

• New Evaluation Method. It is first adopted by CraiditX. We rank the 
predicted logits (value of the logit function) which are the output of the 
second layer in descending order and look at the number of fraud 
labels detected among the top 1, 3, 5, and 10th percentile. An ideal 
model should make all fraud data have top 10 percent logits, since the 
percentage of all fraud data is less than 10 percent. From a business 
perspective, this method represents a trade-off between rejecting the 
top x percentile and reducing default probabilities of the accepted 
sample by a certain percent. 

• The Precision-Recall AUC score(PR score) is a value between 0 and 
1, and a score of 1 represents a model with perfect skill. We could 
obviously note that PR curves does not consider true negatives, which 
makes sense because in fraud detection we are usually concerned 
more about if our model is capable of identifying a rare fraud once it 
arises. 

• Accuracy Rate, AUC and 
KS score are used to 
evaluate the results of 
models.

• AUC and KS score
weights more than 
Accuracy Rate, since we 
could always get a high 
value of Accuracy Rate 
when labeling all the 
samples in testing set as 
the majority class. 

• The top performing models use Sequence Graph Transform (SGT) with a 
variation of some sort of Gradient Boosting Model (GBM). LGBM and CatBoost
are both variations of GBMs. 

• SGT is able to extract long term dependencies from the data and convert them into 
a sequence of events, usually denoted by an alphabetical mapping of events to 
letters. 

• The benefit of LGBM is that it is more computationally efficient than traditional GBM 
models because it uses leaf-wise tree evolution instead of level-wise tree evolution. 

• CatBoost then separates the SGT sequences into categories and penalizes a 
misclassified category on an iteration and implements an overfitting detector to 
ensure that the leaf-wise growth does not conform to the full entry perfectly. 

• Overall the use of GBM together with SGT is a great combination for predicting 
sequences, especially ones like our page view and cross page movement because 
it converts them into shorter sequences with SGT and then lightly iterates over the 
best model until the optimal one is converged upon. 

Methods

Evaluation

Results

• GraphSAGE and FI-GRL model outperform the other models 
according to the AuROC score and KS score.

• GraphSAGE model receives a high True Negative rate, but receives a 
much less True Positive rate than FI-GRL model.

• The results from GraphSAGE and FI-GRL models show that node 
features provide critical information to the learning algorithm.

• MIDAS demonstrates obvious lower AuROC and KS scores compared 
to the baseline model and other models, suggesting that the utilized 
structure and features may not be a suitable fit for the task.

Graph embedding part:
• For GraphSAGE and FI-GRL models, our current results are based 

on a subset of the data, excluding the 'call_info' component. 
However, we encountered a challenge with StellaGraph algorithm, 
which requires unique node IDs. In our case, each node is connected 
to a different set of nodes based on the timestamp, and duplicate IDs 
hold significance. Consequently, GraphSAGE and FI-GRL lack the 
capability to incorporate temporal relationships. To address this issue, 
we can consider modifying the structure of GraphSAGE and FI-GRL 
to accommodate temporal links, or update StellaGraph to allow for 
self-loops.

• Regarding MIDAS and MIDAS-R, it is essential to investigate why our 
current structure is unsuitable for our task.

Sequential embedding part:
• Deep learning models: These models can impose more intricate 

constraints on time-based features while applying techniques such as 
fake label generation.  Additionally, attention-based models can be 
explored further.

• Transformer: We can attempt to utilize the preprocessed data from 
Word2Vec in a plain vanilla LSTM model. Further emphasis can be 
placed on mapping non-sequential features of the data to sequential 
features.

• BERT: Although we used PCA for dimensionality reduction, we 
encouraged to find the optimal number of categories for the 
continuous features. Despite the unconvincing results of the NLP 
models, we still saw potential in approaching this problem as a NLP 
problem. Trying a Stochastic Context Free Grammar (SCFG) model 
to see what other NLP methods could improve the accuracy and 
results. Lastly, creating more sequences that take into account 
interactions between different features to feed the SGT model.


