Meta—Adaptive Stock Movement Prediction with Two—
Stage Representation Learning
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Backg round e Temporal Pattern Shift e Limited Data

Two challenges for stock prediction

« Limited Data: Limited daily data & the models trained
on small datasets may be overfitting
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environment evolves with time, the temporal The potential shifts of temporal patterns in stock There are always limited data and the models

distribution may shift within a |arge time scale. market are commonly seen, which increase the trained on small datasets are susceptible to
difficulty for models to learn from the historical overfitting. For stock price data, even daily data
data. over decades are not big enough to make a

good training set.
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Experiments Online Setting
 The model is allowed to update its parameters for the
Offline Setting next input after each sequential temporal prediction.
 The model has frozen after the training stage and outputs ACL18
all the predictions of testing data simultaneously. Model Acc  MCC
LSTM 0.516  0.045
ACLIS KDD17 GRU 0.509  0.041
Model Acc MCC Acc MCC ALSTM 0.487 0.012
MOM 0.470 —0.064 | 0.498 —0.013 MASSER-ResNet 0.612 0.216
LSTM 0.532  0.067 | 0.516  0.018 MASSER-ResNet-BOCPD | 0.625 0.251
ALSTM 0.549 0.104 0.519 0.026
StockNet 0.550 0.01'7 0.499 0.499 Table 2: Online Setting Acc and MCC on ACL18
Adv-ALSTM 0.572 0.148 0.531 0.052 Online Backtesting
MAN-SF 0.608  0.195 - —__ « We report the return rate of a portfolio constructed by
MASSER-ResNet 0.552 0.099 0.535 0.074 e . .
MASSER-GRU 0579  0.141 | 0543 0.073 the prediction of the online setting.
MASSER-ResNet* | 0.624 0.244 0.542 0.078 : =
MASSER-GRU* 0.581 0.162 0.543 0.047 l\g?f:]is AChl@VgigiZlm _
Table 1: Offline Setting Acc and MCC on ACLI18 and LST™M 8'81%
KDD17 (* means adaptation) GRU 8.35%
ALSTM 13.14%
MASSER-ResNet 29.52 %
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Table 3: Average Online Return Rate on ACL18
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