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• We build on the family of Integral Probability Metrics (IPM) and design a new distance

metric between probability distributions that belong to this family. The new metric is

termed Lipschitz Variational Total Variation Distance (LV-TVD) and is a relaxation of

the integral probability metric representation of the well-known Total Variation Distance

(TVD).

• We propose a procedure based on a linear program (LP) to consistently estimate this

distance based on two empirical samples alone These estimates can provide meaningful

and tight lower bounds for the TVD between two probability distributions. Applications

include quantifying distribution shift and estimating the Neyman Pearson region.

Lipschitz Variational TVD and Two-sample Estimator

Consider the following function class ℱ𝐿𝑉𝐷
𝑙 = {𝑓: ||𝑓||∞ ≤ 1, ||𝑓||𝐿 ≤ 𝑙}, which can be

used to define an Integral Probability Metric (termed LV-TVD) on two probability

distributions 𝑃, 𝑄 with densities 𝑝, 𝑞 on metric space 𝒮, 𝜌 :
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This represents a one-parameter family of IPMs where 𝑙 > 0 is a Lipschitz smoothness

parameter that controls the Lipschitzness of the chosen function class. This is related to

the well-known TVD distance:

𝑇𝑉𝐷 𝑃, 𝑄 = න
𝑥∈𝒮

𝑝 𝑥 − 𝑞 𝑥 𝑑𝑥

through inequality: ∀𝑙 > 0, 𝛾𝐿𝑉𝐷
𝑙 𝑃,𝑄 ≤ 𝑇𝑉𝐷 𝑃,𝑄 .

LV-TVD is a metric on the space of probability distributions and it metrizes weak

convergence like the Dudley metric. Larger 𝑙 results in larger LV-TVD.

With 𝜌 denoting the distance metric on data points, the following LP problem solves for

the empirical LV-TVD based on two empirical data samples 𝑃𝑚 , 𝑄𝑛 of 𝑃,𝑄 and

converges to the true LV-TVD as sample sizes increase. Here {𝑋𝑖}𝑖=1
𝑁 are combined

from the two data samples (𝑁 = 𝑚 + 𝑛). ෨𝑌𝑖 =
1

𝑚
for samples from 𝑃𝑚 and ෨𝑌𝑖 = −

1

𝑛
for

samples from 𝑄𝑛.
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Numerical Demonstration on ETF Market Indices Data

We consider returns (from Yahoo finance) for six ETF indices from 09/2011 to 08/2021. The

indices are iShares J.P. Morgan USD Emerging Markets Bond ETF (EMB), SPDR Bloomberg

High Yield Bond ETF (JNK), iShares National Muni Bond ETF (MUB), Vanguard Developed

Markets Index Fund (VEA), Vanguard 500 Index Fund (VOO), and iShares Russell 2000 ETF

(IWM), representing the following markets respectively: emerging market debt, high yield

bonds, municipal bonds, non-US equities, US large cap, and US small cap. For each index,

there are 2500 trading days segmented into either five (non-overlapping) periods of 500 dates

or ten periods of 250 dates to compute the average distribution shift score.

The distribution shift score for each period is defined by estimating the LV-TVD distance

between each segment and the full data, as shown in Fig. 2 for two different window sizes. The

final averaged distance estimate across all periods is the score reported in Table 1 for each

index and each window size.

Fig 1. Cumulative Returns of (Selected) Market Indices: 

US Large Cap (VOO) vs. Municipal Bonds (MUB)

Fig 2. Distribution Shift Scores of Market Indices for Different Window Sizes

• The Lipschitz parameter in our proposed family of LV-TVD distance metrics can be

adaptively chosen based on the data samples to achieve desirable properties such as scale

invariance and obtain tighter lower bounds to the ground-truth TVD value.

• Extensions to generalized LV-TVD can be achieved by scaling two densities by

respective constants. Its empirical estimator can be obtained similarly using an LP. These

quantities are useful in describing the Neyman Pearson region.

• Distribution shift scores are used as an input in computing Explainability Index (EI) and

Risk of Target (RoT), which are unifying risk metrics introduced by Hirsa et al. [4].

These metrics are applied to asset allocation, security selection, etc.

• Future directions of research include using the proposed estimators to perform change-

point detection in streaming data.

Table 1. Average Estimated Distribution Shift Scores of Market Indices
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From these results, US Large Cap (VOO) can be seen as the most stable index with a small

distribution shift score measured by either window size, and Municipal Bonds (MUB) can be

seen as the most volatile, vice versa. The cumulative returns and distribution shift scores of

these two indices are plotted in Fig. 1 and Fig. 2 respectively, providing intuitive verifications.
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