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Abstract

Trend filtering with total variation regularization is a statistical learning method for estimating the
hidden signal with (non)-linear components. We propose an adaptive and interpretable extension
of trend filtering specifically designed for high-frequency financial time series. This approach simul-
taneously estimates global and local price fluctuations by dynamically adapting to external factors
such as volume, spread, news, and sentiment, resulting in more accurate learning of the price pro-
cess. Under weak assumptions, the proposed estimator can be shown to be Minimax optimal over
a general class of finite total variation functions. A direct application of this work is the systematic
annotation of changepoints in the dynamics of the price process. Future work will explore the utility
of estimates and annotations in designing relative positional embeddings for the financial domain.

LASSO and ℓ1-Trend Filtering

Classical LASSO estimates are defined as the solution to the convex optimization problem of

β̂LASSO (λ) = argmin
β

∥Y −Xβ∥22 + λ ∥β∥1 (1)

where ∥β∥1 =
∑p

i=1 |βi|, with λ ≥ 0 as a hyper parameter specifying the strength of regularization.
A special case of the Lasso is the Gaussian signal approximation problem with estimates defined
as the solution to equation 2 with penalty operator J(·) and hyperparameter λ ≥ 0

β̂GSA (λ) = argmin
β

∥Y − β∥22 + λ ∥J(β)∥1 (2)

The ℓ1 Trend Filter (TF) arises when the penalty operator in the signal approximation problem is the
k-th order differences. For k = 0 the estimates are piecewise constant, k = 1 piecewise linear,. . ..
The resulting objective is of the following form where Dk+1 is a discrete difference linear operator.

β̂TF (λ) = argmin
β

∥Y − β∥22 + λ
∥∥∥D(k+1)β

∥∥∥
1

(3)

TF recovers close to true signal of blocks and heavyside test functions with Gaussian white noise

Adaptive Trend Filtering

Adaptive Trend Filtering (ATF) estimates are defined as the solution to the optimization problem of

β̂ATF (λ) = argmin
β

∥Y − β∥22 + λ
∥∥∥Dw,k+1β

∥∥∥
1

(4)

where Dw,k+1 is a weighted discrete difference operator with weights w1, . . . , wn that are incre-
mentally learned in the estimation procedure from the observed signal and chosen covariates.
Minimax optimal rates can be shown when the true function f0 belongs to the class of finite total
variation functions

Fk(C) = f : [0, 1] −→ R : f is k times weakly differentiable and TV (fk) ≤ C (5)

In the case where k = 1 recall the resulting estimates are piecewise linear. Then under assumptions

of sub-Gaussian errors and a tuning parameter on the order of λ = O(n
1
5C

−3
5

n ), with conditions similar
to assumptions on design point spacing within [3] of

maxi=1,...,n (w−1
i ) = O(n−

2
5C

−4
5

n ) (6)

then the resulting ATF estimates will converge to f0 in probability at the Minimax optimal rate of

1

n

n∑
i=1

(β̂i − f0(xi))
2 = OP(n

−4
5C

2
5
n) (7)

Algorithms

Figure 1: Log-Log of Computational Time vs. Problem Size• Requires estimation of the unknown pa-
rameters, β1, . . . βn in the ℓ1/ adaptive trend
filter defined in 3 and 4

• Solve the convex quadratic program com-
posed of the primal objective in 8 and dual
objective in 9 with an interior point method

• Discrete difference operator is Toeplitz and
banded with bandwidth k + 2, allowing the
linear system in each iteration to be solved
in linear time complexity

• Specialized alternating direction method of
multipliers routines have been developed in
[2] that allow for distributed learning in
Hadoop and Apache Spark

• ATF computational time is competitive to TF
across various problem sizes as displayed in the log-log plot in Figure1

The primal objective of ATF

∥Y − β∥22 + λ ∥z∥1 s.t. z = D(w,k+1)β (8)

And Lagrangian dual objective is of the form

1

2

∥∥∥νTD(w,k+1)D(w,k+1)Tν
∥∥∥2
2

s.t. λ1 ≤ ν ≤ λ1 (9)

Empirical Analysis

Figure 2: Local Effect of Covariates on Trend Estimation• Applied to high-frequency trade and
quote data from New York Stock Exchange

• Lagged market microstructure features
as exogenous covariates; Spread, Volume,
Last Return, Order Book Imbalance

• Learns underlying hidden signal by lo-
cally adapting price process estimates to
smoothness information of the covariates

• Smoothness, location, and magnitude of
trend estimates vary locally, see Figure 2 for
a comparison of AAPL at market open

Often recent news of an asset, such as an earnings announcement or an economic data re-
lease, will influence its trading activity. Below aggregated one-second quote data of AAPL
near market-open is plotted the day after an earnings announcement. Using public Twitter data,
a tweet corresponding to a price target increase from Morgan Stanley is extracted and, us-
ing FinBert [1], has an estimated positive sentiment score of 0.71. Depending on the impact
decay specified, sentiment covariates can be engineered and used in ATF. Note the green es-
timate corresponds to a weak positive sentiment and rebounds quickly after the tweet
while the red estimate which corresponds to a strong positive impact persists longer.

Changepoint Detection

Figure 3: ATF Capturing Nonlinear Jump and Changepoint
• Multiple Changepoint Detection in the mean

has been formulated as a special case of
the LASSO and can be solved as an (A)TF

x̂ = arg min
x∈Rn

∥y − x∥22 + λ
∥∥∥D2x

∥∥∥
1

(10)

• Indices in (A)TF estimates of significant k-
th order differences are selected to identify
candidate changepoints in price trends

• Incorporating covariates in ATF allows for
nonlinearity in trend estimation and change-
point annotation, see Figure 3 where ATF
captures the nonlinear jump and change-
point quicker than TF

Conclusions and Extensions

• Adaptive Trend Filtering is an extension of ℓ1 Trend Filtering designed to capture nonlineari-
ties within high-frequency time series. ATF learns the underlying signal while locally adapting
to external factors such as volume, spread, and sentiment for more accurate learning. We
discussed the direct use of resulting estimates for interpretable changepoint annotation

• We will explore if our results can be applied to designing relative embeddings of local price
dynamics to utilize within attention-based architectures specific to the financial domain
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