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Introduction

Stochastic gradient Langevin dynamics (SGLD) [6] is a widely used Markov Chain Monte Carlo (MCMC) method

in deep learning. The sampler smoothly transitions from stochastic optimization to sampling as the injected

noise enables exploration for posterior sampling and uses the Langevin diffusion. However, in the case of con-

strained optimization problems, the Langevin diffusion without adjustments fail. One way to adjust the Langevin

diffusion for constrained cases is to consider reflected stochastic differential equations like in [1]. Additionally,

reflected stochastic differential equations can be simulated numerically via projected Euler methods and are used

in Bayesian Learning and stochastic adaptative control, see [13], [8], [2], [14]. Our goal is to develop an unajusted

penalization-based Reflected Langevin Monte Carlo Algorithm (pRLMC) for deep learning using properties of re-

flected stochastic differential equations and their penalizations.

Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics stems from the Langevin Diffusion which obeys the following stochastic

differential equation

dXt = −∇f (Xt)dt + σdWt (1)

where Xt ∈ Rd, f : Rd → R is the energy function, Wt a d-dimensionalWeiner process, and σ2/2 the temperature.
Let 〈, 〉 and || · ||, respectively, denote the Euclidean inner product and the corresponding L2 norm on Rd. If

we assume that for some finite a, b, and N we have −〈∇f (Xt), Xt〉 ≤ a||Xt||2 + b, ||Xt|| > N , then according

to Theorem 2.1 in [9] the solution Xt of the diffusion equation (1) converges to the unique invariant Gibbs

distribution:

dπ(x) = 1
Z

exp(−f (x)
σ2/2

)dx (2)

such that the normalization constant Z is the following

Z =
∫

D
exp(−f (x)

σ2/2
) dx (3)

Applying the Euler-Maruyama scheme to (1), we get the Langevin Monte Carlo (LMC)

Xk+1 = Xk − η∇f (Xk) + σ
√

ηεk (4)

where η is the step size and ε ∼ N (0, Id×d) such that Id×d is the d × d unit matrix.

Reflected Stochastic Gradient Langevin Dynamics

For constrained convex stochastic optimization, instead of using the standard Langevin diffusion, we consider the

Reflected Stochastic Differential Equation (RSDE) of the form:

Xt = X0 +
∫ t

0
σdWs −

∫ t

0
∇g(Xs)ds + Kt (5)

with reflecting boundary condition on closed convex domain D. Here, X0 ∈ D, X is a reflecting process on D, K

is a bounded variation process with variation ||K|| increasing only, when Xt ∈ ∂D, W is a d-dimentional standard

Weiner process, σ ∈ R, and g : Rd → R differentiable.

Consider the penalized Stochastic Differential Equation

Xn
t = X0 +

∫ t

0
σdW n

s −
∫ t

0
∇g(Xn

s )ds + Kn
t (6)

where Π(x) is the metric projection of x onto the convex body D which is the point of ∂D where the minimum

distance from x to points from D is attained. Additionally, Kn
t is the following

Kn
t = −n

∫ t

0
Xn

s − Π(Xn
s ) ds (7)

Assume that the following conditions are satisfied for convex D and for some R > 0 and L > 0:

σ2 + ||∇g(x)||2 ≤ R(1 + ||x||2) (8)

and

||∇g(x) − ∇g(y)||2 ≤ L||x − y||2 (9)

Then according to Theorem 4.2 of [1], for Xt strong solution of (5) there exists some C > 0 such that:

E[sup||Xn
t − Xt||2]

1
2 ≤ C(ln(n)

n
)

1
4 (10)

Theorem 1. The penalized SDE (6) could be rewritten in the following differential form

dXn
t = −∇fn(Xn

t )dt + σdW n
t (11)

such that the penalized energy function fn : D → R is defined as follows:

fn(x) = g(x) + n

2
dist2(x, ∂D)

Theorem 2. If D is convex domain and g is strongly convex then the penalized energy function fn is also

strongly convex for x ∈ D and n ∈ N.

Wasserstein Contraction of the Penalized Reflected Stochsatic Differential Equation

According to [11], for all µ, ν probability measures on Rd, the Wasserstein distance of order 2 is:

W2(µ, ν) = inf
π∈Ω(µ,ν)

E(Xt,Yt)∼π[||Xt − Yt||2]
1
2 (12)

Such that µ and ν respectively are the probability laws of Xt and Yt and where Ω(µ, ν) is the set of all couplings

between µ and ν.
Theorem 3. Let µ0 and ν0 be two measures in Rd and Xn

t ∈ D and Y n
t ∈ D the solutions of (6) starting from

X0 and Y0 of respective laws µ0 and ν0, both driven by the same Weiner process. If we assume that D is convex

domain and g strongly convex, then we have the following contraction result:

W2(µn
t , νn

t ) ≤ e−CtW2(µ0, ν0) (13)

Corollary 1. Assume that the conditions of Theorem 3 are satisfied and for finite constants a,b,N we have the

following condition on g for ||Xn
t || > N :

− 〈∇g(Xn
t ), Xn

t 〉 ≤ (a + n)||Xn
t ||2 − n〈Xn

t , Π(Xn
t )〉 + b (14)

Then, the solution of (6) converges to the unique invariant Gibbs distribution dependent on the penalization term

n

dπ(x) = 1
Zn

exp(−
g(x) + n

2dist2(x, ∂D)
σ2/2

)dx (15)

such that the penalized normalization constant Zn is the following

Zn =
∫

D
exp(−

g(x) + n
2dist2(x, ∂D)
σ2/2

) dx (16)

and we have the following contraction result:

W2(µn
t , πn) ≤ e−CtW2(µ0, πn) (17)

Wasserstein Contraction of Reflected Stochastic Gradient Langevin Dynamics

Wasserstein Contraction of Reflected Stochastic Gradient Langevin Dynamics In this portion, we investigated the

Wasserstein contraction properties of the reflected stochastic differential equation as well as the convergence to

a unique invariant distribution.

Theorem 4. Let Xn ∈ D and Y n ∈ D satisfy (6), n ∈ N and let Xt ∈ D and Yt ∈ D solutions of (5) with respective

laws µt and νt. Assume that the conditions (8) and (9) are satisfied. Then, we have the following contraction result

for the laws of Xt and Yt:

W2(µt, νt) ≤ e−CtW2(µ0, ν0) + K(ln(n)
n

)
1
4 (18)

Corollary 2. Let Xt ∈ D and Yt ∈ D solutions of (5) with respective laws µt and νt. Assume that the conditions

(8) and (9) are satisfied. Then, we have the following contraction result for the laws of Xt and Yt:

W2(µt, νt) ≤ e−CtW2(µ0, ν0) (19)

Corollary 3. Under the generalized one-sided Lipschitz condition, the geometric drift condition, and growth

condition of Corollary 1 of [8] and given the contraction result of Corollary 2, there exists a unique stationary

distribution π ∈ PV , such that
∫

D V (x) dπ(x) < ∞. Let Xt be a solution to (5) with law µt such that∫
D V (x) dµ0(x) < ∞ . If V (x) ≥ 1 for all x ∈ D, then µt has the following contraction property:

W2(µt, π) ≤ χe−CtW2(µo, π) (20)

such that χ = 1
2diam(D)ξ−1 and ξ−1 > 0.

Theorem 5. Assuming the generalized one-sided Lipschitz condition, the geometric drift condition, and growth

condition of Corollary 1 of [8], we have the following convergence result for the invariant measure and its

penalized counterpart for some C > 0:

W2(π, πn) ≤ C(ln(n)
n

)
1
4 (21)

Result

Applying the Euler-Maruyama scheme to (11), we get the Penalized Reflected Langevin Monte Carlo (pRLMC)

Xn
k+1 = Xn

k − η∇fn(Xn
k ) + σ

√
ηεn

k (22)

where k ∈ {0, ..., T}, η is the step size, penalization number n is sufficiently large, εn
k ∼ N (0, Id×d) such that Id×d

is the d × d unit matrix, and

fn(Xn
k ) = g(Xn

k ) + n

2
dist2(Xn

k , ∂D)

.

Unadjusted pRLMC Algorithm

Input: starting guess X0, step size η > 0, penalization number n, volatility σ, number of epochs T, convex set D
Output: Xn

0 , ..., Xn
T

for t = 0 to T do

compute ∇fn(Xn
t ) = ∇[g(Xn

t ) + n
2dist2(Xn

t , ∂D)]
sample εn

t ∼ N (0, Id×d)
compute Xn

t+1 = Xn
t − η∇fn(Xn

t ) + σ
√

ηεn
t

end for

return Xn
0 , ..., Xn

T
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