A NOVEL ALGORITHM FOR ONLINE BILEVEL OPTIMIZATION FOR PRICE FORECASTING AROUND MARKET MOVING NEWS Jason Bohne^{1,2}, David Rosenberg², Gary Kazantsev², Paweł Polak¹

¹Stony Brook University ² Bloomberg

QR code for the full paper

Abstract

Bilevel optimization methods are increasingly relevant in machine learning, especially for tasks such as hyperparameter optimization and meta-learning. Compared to the offline setting, online bilevel optimization offers a more dynamic framework by accommodating time-varying functions and sequentially arriving data in the problem formulation. We introduce a novel online Bregman bilevel optimizer (OBBO) with an improved theoretical guarantee for regret minimization and an efficient computational implementation via PyTorch. Empirically, we apply OBBO against established online/offline bilevel benchmarks in an online hyperparameter optimization for financial time series and display the superior performance of OBBO in terms of forecasting loss on an independent test set.

Bilevel Optimization

Canonical hyperparameter optimization problem: Optimization of a hyperparameter λ on a validation set for optimal parameters $\hat{\beta}(\lambda)$ on a training set.

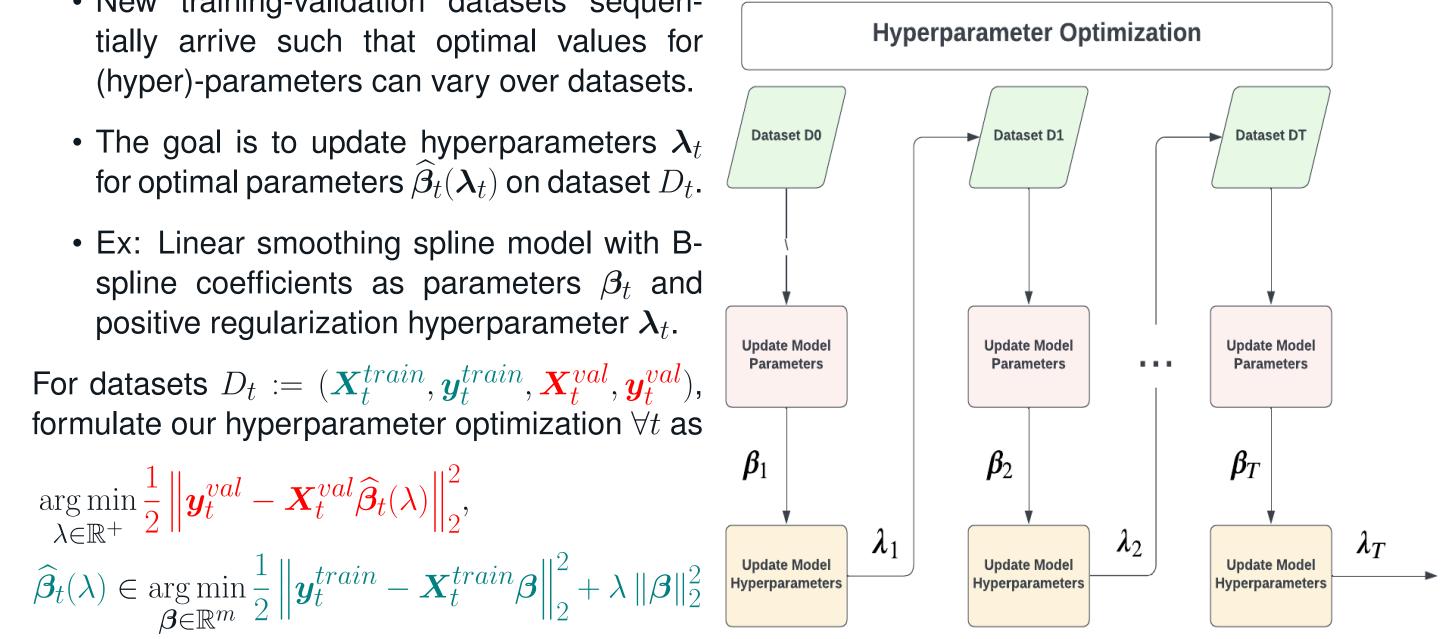
$1 \parallel 1 \parallel 1 \parallel 1 \parallel 1$

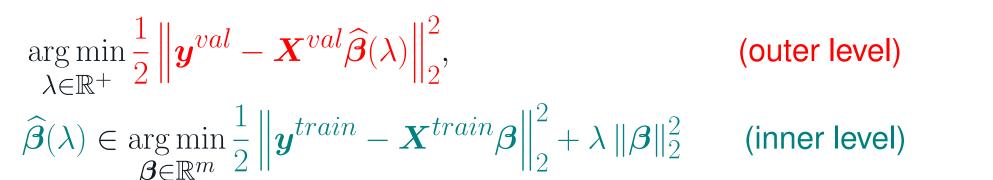
Application to Hyperparameter Optimization

Consider hyperparameter optimization where:

- New training-validation datasets sequen-(hyper)-parameters can vary over datasets.
- The goal is to update hyperparameters λ_t
- Ex: Linear smoothing spline model with Bspline coefficients as parameters β_t and positive regularization hyperparameter λ_t .

Figure 2: Diagram of Hyperparameter Optimization





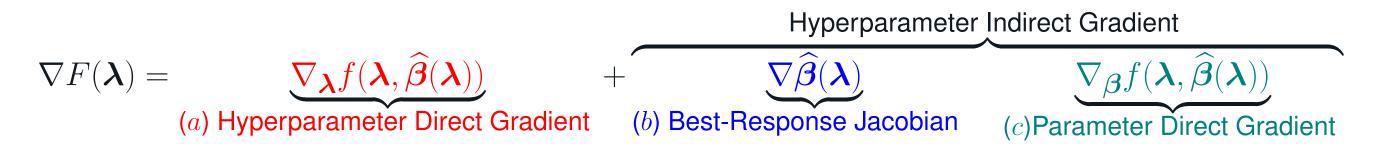
The above problem includes ridge regression, smoothing spline regression, and kernel ridge regression. Hyperparameter optimization is a special case of a **bilevel optimization**, where there is an outer level optimization parameterized by the optimal solution of an inner level optimization:

$$\arg \min_{\boldsymbol{\lambda} \in X \subseteq \mathbb{R}^{d_1}} \left\{ F(\boldsymbol{\lambda}) \triangleq f\left(\boldsymbol{\lambda}, \widehat{\boldsymbol{\beta}}(\boldsymbol{\lambda})\right) \right\}, \quad \text{(outer level)} \\ \widehat{\boldsymbol{\beta}}(\boldsymbol{\lambda}) \in \arg \min g(\boldsymbol{\lambda}, \boldsymbol{\beta}) \qquad \text{(inner level)} \\ \boldsymbol{\beta} \in \mathbb{R}^{d_2} \end{aligned}$$

Other special cases include meta-learning, neural architecture search, dataset distillation, and RLHF.

The Hypergradient

One can differentiate through bilevel optimization problems under a few technical assumptions leading to **bilevel specific gradient descent algorithms**. With the chain rule, the gradient of the outer level objective can be decomposed into a direct and indirect gradient term.



Direct gradient terms (a,c) are computable if the objective is differentiable w.r.t. hyperparameters and parameters, e.g., neural networks. For any hyperparameter values λ , the best-response Jacobian (b) is the typically **unknown** gradient of the corresponding optimal parameters. However with **implicit** function theorem, one can derive the best-response Jacobian in terms of computable gradients as

Training Hessian

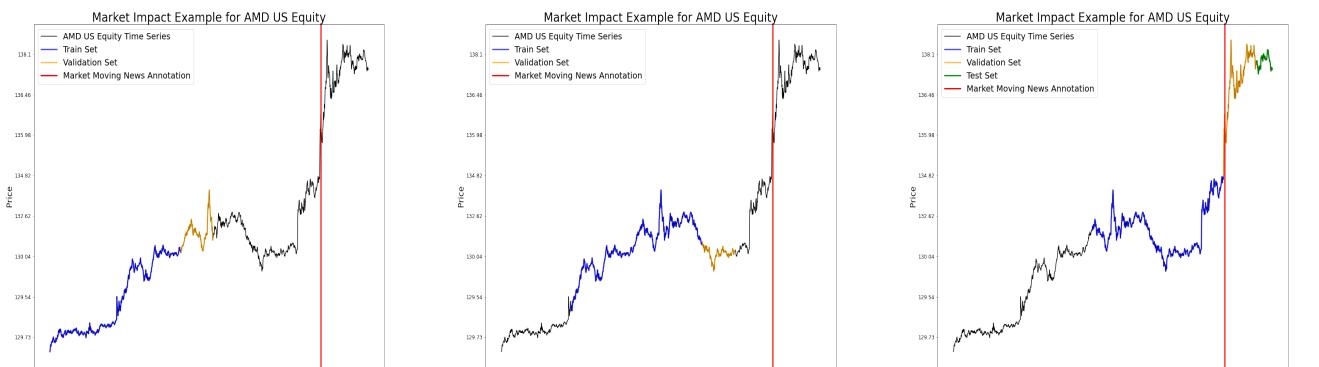
Price Forecasting around Market Moving News

Market Moving News Dataset:

- Significant price events and news stories annotated via segmentation algorithm.
- Subset of the RAY index (U.S. equities) between January 1, 2021 and June 1, 2022.

Experiment Setup:

- 440 samples of equity time series partitioned into a rolling window of training-validation data.
- Separate test set post annotated price event to evaluate forecasting mean-squared error.
- Model choice of linear smoothing spline with B-spline coefficients as parameters β_t and regularization hyperparameter λ_t results in forecasts satisfying assumptions of annotation pipeline.



An Improved Bilevel Optimizer

Our online Bregman bilevel optimizer (OBBO) generalizes the gradient step in known online bilevel optimizers through the application of a Bregman Divergence $\mathcal{D}_{\phi}(\cdot, \cdot)$. This offers a generalization from the squared Euclidean distance, as in Lin et al. 2024; Tarzanagh et al. 2024. Given a continuously differentiable ρ -strongly convex function $\phi(\lambda)$, a Bregman Divergence $\mathcal{D}_{\phi}(\cdot, \cdot)$ is defined for all $oldsymbol{\lambda}_1,oldsymbol{\lambda}_2\in\mathcal{X}$ as:

 $\mathcal{D}_{\phi}(\boldsymbol{\lambda}_{2},\boldsymbol{\lambda}_{1}) := \phi(\boldsymbol{\lambda}_{2}) - \phi(\boldsymbol{\lambda}_{1}) - \langle \nabla \phi(\boldsymbol{\lambda}_{1}), \boldsymbol{\lambda}_{2} - \boldsymbol{\lambda}_{1} \rangle.$

For a Bregman divergence $\mathcal{D}_{\phi}(\cdot, \cdot)$, our generalized gradient step then has the form of

$$\boldsymbol{\lambda}^{+} = \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \mathcal{X}} \left\{ \langle \boldsymbol{q}, \boldsymbol{\lambda} \rangle + \frac{1}{\alpha} \mathcal{D}_{\phi}(\boldsymbol{\lambda}, \boldsymbol{u}) \right\},\$$

where $\alpha > 0$ is a step size, and $q, u \in \mathbb{R}^{d_1}$. Our analysis shows **OBBO** achieves an improved sublinear rate of bilevel local regret- a measure of stationarity for online bilevel algorithms from Tarzanagh et al. 2024. For a window smoothing parameter $w \ge 1$, the bilevel local regret is defined for a smooth $F_t(\boldsymbol{\lambda})$ as

$$BLR_w(T) := \sum_{t=1}^T \left\| \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2, \quad F_{t,w}(\boldsymbol{\lambda}_t) := \frac{1}{w} \sum_{i=0}^{w-1} F_{t-i}(\boldsymbol{\lambda}_{t-i}),$$

Specifically, the condition number of the inner objective $g(\lambda, \beta)$ is $\kappa_q > 1$. **OBBO** achieves a κ_q^2 dependency, whereas benchmarks of SOBOW (Lin et al. 2024) and OAGD (Tarzanagh et al. 2024) only achieve κ_a^3 and κ_a^4 respectively.

2021-11-03 2021-11-04 2021-11-04 2021-11-04 2021-11-04 2021-11-04 Datetime

Figure 3: Sample training-validation subsets for AMD U.S. Equity and market event on 11-08-2021.

Benchmark algorithms include gradient bilevel algorithms OAGD (Tarzanagh et al. 2024) and SOBOW (Lin et al. 2024), limited to a gradient descent step. Further benchmarked by general purpose optimizers; ADAM (Kingma 2014), SGDM.

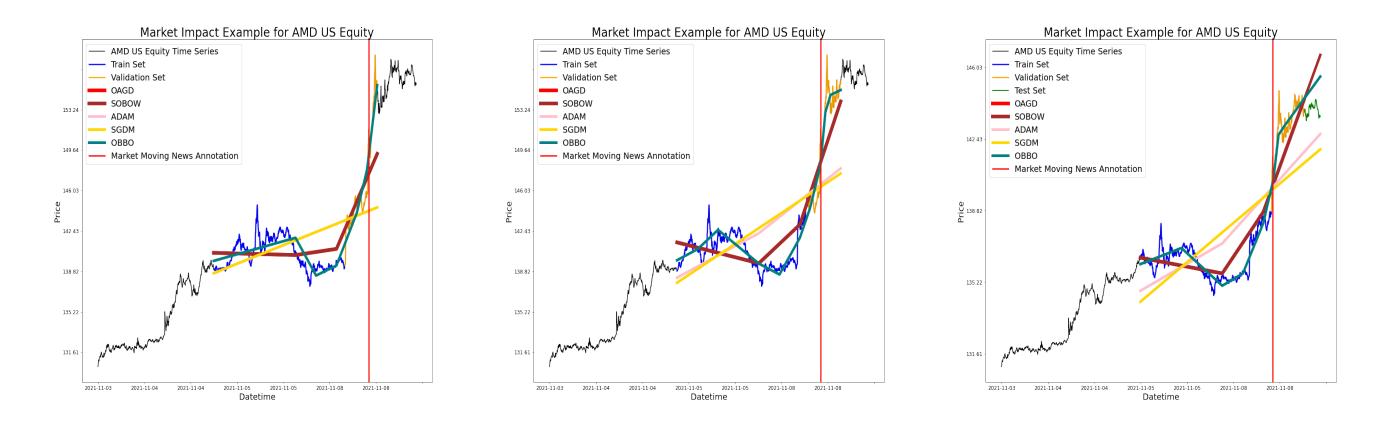


Figure 4: Example forecasts generated with **OBBO** vs. benchmark algorithms.

Better convergence of **OBBO** results in quicker adaptability of our underlying model to annotated event and improved forecasting MSE on a test set post market event— statistics provided below.

	Forecasting Loss across U.S. Markets	
Algorithm	Mean Loss \pm Standard Error	Median Loss \pm Median Absolute Deviation
OBBO	0.661 ± 0.055	0.205 ± 0.150
OAGD	0.707 ± 0.053	0.265 ± 0.209
SOBOW	0.689 ± 0.053	0.273 ± 0.215
\mathbf{Adam}	1.265 ± 0.176	0.267 ± 0.230
\mathbf{SGDM}	0.872 ± 0.078	0.401 ± 0.286

- One special case of the generalized gradient Figure 1: For local minimum in above, see the improvement step given adaptive matrix H_t is Adagrad – of Adagrad (gray) relative to Gradient Descent (teal). which can better capture the underlying geometry via use of adaptive learning rates.
- Another special case of the generalized gradient step is the reduction to gradient descent, when $\phi(\boldsymbol{\lambda}) = \frac{1}{2} \|\boldsymbol{\lambda}\|^2$ and $\mathcal{X} = \mathbb{R}^{d_1}$.
- Empirically, we update hyperparameters with an Adagrad step (2nd order information) vs. a gradient descent step (only 1st order).

Example	Bregman Function
Gradient Descent	$\frac{1}{2} \ \boldsymbol{\lambda}\ _2^2$
Adagrad	$\frac{1}{2} \boldsymbol{\lambda}^T \boldsymbol{H}_t \boldsymbol{\lambda}$

 Table 2: Example Bregman Functions

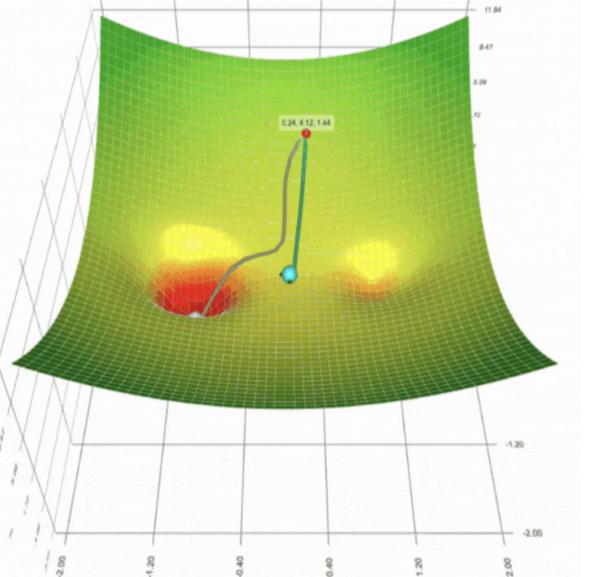


Table 3: Statistics of forecasting mean-squared error across U.S. markets.

Conclusions and Extensions

- Hyperparameter optimization (HO) is actually a special case of bilevel optimization.
- Provide an improved algorithm for general bilevel optimization problems.
- Empirically show benefit of our improved algorithm in HO for financial time series forecasting.
- Determine if our algorithm offers an empirical improvement in other special cases, e.g., RLHF.

References:

Kingma, Diederik P (2014). "Adam: A Method for Stochastic Optimization". In: arXiv preprint arXiv:1412.6980. Lin, Sen et al. (2024). "Non-Convex Bilevel Optimization with Time-Varying Objective Functions". In: Advances in Neural Information Processing Systems 36.

Tarzanagh, Davoud Ataee et al. (2024). "Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods". In: International Conference on Artificial Intelligence and Statistics.

Full paper can be found on https://arxiv.org/abs/2409.10470