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Abstract

Bilevel optimization methods are increasingly relevant in machine learning, especially for tasks
such as hyperparameter optimization and meta-learning. Compared to the offline setting, online
bilevel optimization offers a more dynamic framework by accommodating time-varying functions and
sequentially arriving data in the problem formulation. We introduce a novel online Bregman bilevel
optimizer (OBBO) with an improved theoretical guarantee for regret minimization and an efficient
computational implementation via PyTorch. Empirically, we apply OBBO against established on-
line/offline bilevel benchmarks in an online hyperparameter optimization for financial time series and
display the superior performance of OBBO in terms of forecasting loss on an independent test set.

Bilevel Optimization

Canonical hyperparameter optimization problem:
Optimization of a hyperparameter λ on a validation set for optimal parameters β̂(λ) on a training set.

argmin
λ∈R+
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∥∥∥yval −Xvalβ̂(λ)
∥∥∥2
2
, (outer level)

β̂(λ) ∈ argmin
β∈Rm
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∥∥∥ytrain −Xtrainβ
∥∥∥2
2
+ λ ∥β∥22 (inner level)

The above problem includes ridge regression, smoothing spline regression, and kernel ridge regres-
sion. Hyperparameter optimization is a special case of a bilevel optimization, where there is an
outer level optimization parameterized by the optimal solution of an inner level optimization:

argmin
λ∈X⊆Rd1

{
F (λ) ≜ f

(
λ, β̂(λ)

)}
, (outer level)

β̂(λ) ∈ argmin
β∈Rd2

g(λ,β) (inner level)

Other special cases include meta-learning, neural architecture search, dataset distillation, and RLHF.

The Hypergradient

One can differentiate through bilevel optimization problems under a few technical assumptions –
leading to bilevel specific gradient descent algorithms. With the chain rule, the gradient of the
outer level objective can be decomposed into a direct and indirect gradient term.

∇F (λ) = ∇λf (λ, β̂(λ))︸ ︷︷ ︸
(a) Hyperparameter Direct Gradient

+

Hyperparameter Indirect Gradient︷ ︸︸ ︷
∇β̂(λ)︸ ︷︷ ︸

(b) Best-Response Jacobian

∇βf (λ, β̂(λ))︸ ︷︷ ︸
(c)Parameter Direct Gradient

Direct gradient terms (a,c) are computable if the objective is differentiable w.r.t. hyperparameters and
parameters, e.g., neural networks. For any hyperparameter values λ, the best-response Jacobian (b)
is the typically unknown gradient of the corresponding optimal parameters. However with implicit
function theorem, one can derive the best-response Jacobian in terms of computable gradients as

∇β̂(λ) = −∇2
λ,βg(λ, β̂(λ))︸ ︷︷ ︸

Training Partials

Training Hessian︷ ︸︸ ︷(
∇2
β,βg(λ, β̂(λ))

)
−1

An Improved Bilevel Optimizer

Our online Bregman bilevel optimizer (OBBO) generalizes the gradient step in known online bilevel
optimizers through the application of a Bregman Divergence Dϕ(·, ·). This offers a generalization
from the squared Euclidean distance, as in Lin et al. 2024; Tarzanagh et al. 2024. Given a continu-
ously differentiable ρ-strongly convex function ϕ(λ), a Bregman Divergence Dϕ(·, ·) is defined for all
λ1,λ2 ∈ X as:

Dϕ(λ2,λ1) := ϕ(λ2)− ϕ(λ1)− ⟨∇ϕ(λ1),λ2 − λ1⟩.

For a Bregman divergence Dϕ(·, ·), our generalized gradient step then has the form of

λ+ = argmin
λ∈X

{
⟨q,λ⟩ + 1

α
Dϕ(λ,u)

}
,

where α > 0 is a step size, and q,u ∈ Rd1. Our analysis shows OBBO achieves an improved
sublinear rate of bilevel local regret– a measure of stationarity for online bilevel algorithms from
Tarzanagh et al. 2024. For a window smoothing parameter w ≥ 1, the bilevel local regret is defined
for a smooth Ft(λ) as

BLRw(T ) :=
T∑
t=1

∥∥∇Ft,w(λt)
∥∥2 , Ft,w(λt) :=

1

w

w−1∑
i=0

Ft−i(λt−i),

Specifically, the condition number of the inner objective g(λ,β) is κg> 1. OBBO achieves a κ2g
dependency, whereas benchmarks of SOBOW (Lin et al. 2024) and OAGD (Tarzanagh et al. 2024)
only achieve κ3g and κ4g respectively.

Figure 1: For local minimum in above, see the improvement
of Adagrad (gray) relative to Gradient Descent (teal).

• One special case of the generalized gradient
step given adaptive matrix Ht is Adagrad –
which can better capture the underlying ge-
ometry via use of adaptive learning rates.

• Another special case of the generalized gra-
dient step is the reduction to gradient de-
scent, when ϕ(λ) = 1

2 ∥λ∥
2 and X = Rd1.

• Empirically, we update hyperparameters with
an Adagrad step (2nd order information) vs.
a gradient descent step (only 1st order).

Example Bregman Function

Gradient Descent 1
2 ∥λ∥

2
2

Adagrad 1
2λ

THtλ

Table 2: Example Bregman Functions

Full paper can be found on https://arxiv.org/abs/2409.10470

Application to Hyperparameter Optimization

Figure 2: Diagram of Hyperparameter OptimizationConsider hyperparameter optimization where:

• New training-validation datasets sequen-
tially arrive such that optimal values for
(hyper)-parameters can vary over datasets.

• The goal is to update hyperparameters λt
for optimal parameters β̂t(λt) on dataset Dt.

• Ex: Linear smoothing spline model with B-
spline coefficients as parameters βt and
positive regularization hyperparameter λt.

For datasets Dt := (Xtrain
t ,ytraint ,Xval

t ,yvalt ),
formulate our hyperparameter optimization ∀t as

argmin
λ∈R+
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2
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Price Forecasting around Market Moving News

Market Moving News Dataset:

• Significant price events and news stories annotated via segmentation algorithm.

• Subset of the RAY index (U.S. equities) between January 1, 2021 and June 1, 2022.

Experiment Setup:

• 440 samples of equity time series partitioned into a rolling window of training-validation data.

• Separate test set post annotated price event to evaluate forecasting mean-squared error.

• Model choice of linear smoothing spline with B-spline coefficients as parameters βt and regu-
larization hyperparameter λt results in forecasts satisfying assumptions of annotation pipeline.

Figure 3: Sample training-validation subsets for AMD U.S. Equity and market event on 11-08-2021.

Benchmark algorithms include gradient bilevel algorithms OAGD (Tarzanagh et al. 2024) and
SOBOW (Lin et al. 2024), limited to a gradient descent step. Further benchmarked by general
purpose optimizers; ADAM (Kingma 2014), SGDM.

Figure 4: Example forecasts generated with OBBO vs. benchmark algorithms.
Better convergence of OBBO results in quicker adaptability of our underlying model to annotated
event and improved forecasting MSE on a test set post market event— statistics provided below.

Table 3: Statistics of forecasting mean-squared error across U.S. markets.

Conclusions and Extensions

• Hyperparameter optimization (HO) is actually a special case of bilevel optimization.

• Provide an improved algorithm for general bilevel optimization problems.

• Empirically show benefit of our improved algorithm in HO for financial time series forecasting.

• Determine if our algorithm offers an empirical improvement in other special cases, e.g., RLHF.
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