
Explainable AI: Improving the Stability of LIME

Abstract
This study advances credit risk assessment in Peer-to-Peer (P2P) lending 
by integrating traditional financial data with machine learning and 
explainable AI techniques. We optimize prediction performance using 
advanced machine learning techniques like XGBoost and GLM while 
enhancing transparency through SHAP and LIME. Focusing on LIME's 
limitations, such as instability and sensitivity to hyperparameters, we 
implement and evaluate enhanced versions including S-LIME, DLIME, 
OptiLIME, and BayLIME. These improvements aim to increase the 
stability and reliability of explanations in P2P lending risk assessment.

Introduction on LIME

The use of XAI modules is essential for elucidating the decision-making process of 
black-box machine learning models, particularly in the context of loan issuance. These 
modules offer both stakeholders a clear and impartial explanation by analyzing the 
relative importance of the various factors influencing the loan decision. This need for 
transparency is well-addressed by the LIME model, which explores the local behavior 
of an instance by generating perturbed samples in its vicinity and fitting an 
interpretable model to predict the instance's decision. Each perturbation is evaluated 
based on its proximity to the original instance and the complexity of the interpretable 
model. The local model can be from the class of potentially interpretable models such 
as linear models, decision trees, etc. The explanations provided by LIME for each 
observation $x$ is obtained as follows:

where G is the class of potentially interpretable models such as linear models and 
decision trees
The goal is to minimize the locality aware loss L without making any assumptions 
about f , since a key property of LIME is that it is model agnostic. L is the measure of 
how unfaithful g is in approximating f in the locality defined by π(x).

Introduction

The rise of Peer-to-Peer (P2P) lending has transformed financial services, 

but its unique risks necessitate robust risk management. Machine learning 

(ML) has revolutionized risk management, yet the black-box nature of ML 

models poses challenges, particularly in the regulated financial industry. 

Explainable AI (XAI) is crucial to foster trust, ethics, and compliance. 

This work focuses on improving the LIME technique, a prominent XAI 

method, to enhance its stability and reliability for practical application in 

P2P lending risk management.

Conclusions 
In light of the increasing reliance on machine learning models for critical lending decisions in P2P lending, it is 
crucial for all parties involved to understand the reasoning behind these model predictions. Explainable AI models, 
such as SHAP and LIME, offer frameworks to assess and rank the importance of features relevant to loan 
assessments. LIME, in particular, generates local perturbations around an instance and fits an interpretable model to 
determine feature weightings. However, this approach raises concerns regarding the stability and robustness of the 
results, especially as instances or the complexity of the interpretable model vary. To address these concerns, several 
enhanced versions of LIME have been proposed, including S-LIME, DLIME, OptiLIME, and BayLIME. These 
models aim to improve the stability and reliability of LIME, offering users more dependable insights into model 
decisions. By advancing these methods, we move closer to achieving more trustworthy and consistent explanations, 
which are essential for informed decision-making in the lending industry.
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Preliminary Works

The study used the Bondora P2P lending dataset, which includes over 

30,000 records with 190 features and a binary default label. The data was 

carefully preprocessed, handling missing values, detecting and treating 

outliers, scaling features, and encoding categorical variables. Exploratory 

data analysis identified 10 key predictive features, including age, gender, 

debt-to-income ratio, interest rate, monthly payment, and loan history. 

Descriptive statistics revealed diverse borrower and loan characteristics, 

with notable correlations between the features. An XGBoost model was 

then trained using the selected features, and feature importance analysis 

highlighted the critical role of financial variables like loan amount, 

monthly payment, and previous loans, as well as demographic factors like 

age and education level. To further explain the model's predictions, the 

researchers conducted SHAP and LIME analyses, aiming to enhance the 

interpretability and transparency of the credit risk assessment framework 

for P2P lending.

Proportionality of LIME Stability and Model 

Complexity

While LIME offers an understandable and unbiased explanation of black-box ML 
models, its reliance on generating random perturbations around an instance raises 
concerns about its stability. This instability becomes particularly evident when 
comparing interpretable models of different complexities. To assess this, four models 
with varying complexities were analyzed to determine feature rank instability, feature 
value instability, and Jaccard index rankings for the top five features using the P2P 
Loan dataset. The rank and value instability were measured by calculating the variance 
of each feature’s ranking and value across 20 iterations. The models, listed from lowest 
to highest complexity, included Logistic Regression, Decision Tree, Random Forest, 
and Neural Network. In below tables,  notice the relative increase in instability for both 
the features' rank and value as the model complexity increases. There seems to be less 
of a conclusive pattern with the Jaccard index with respect to instability with 
complexity especially past the second index; however, it is noticeable that generally as 
model complexity increases, the Jaccard ranking decreases.

Examining Robustness with LIME Stability
The paper "On the Robustness of Interpretability Methods" proposes a framework to assess the robustness of 
interpretability methods, such as LIME, by evaluating how small input modifications affect the resulting 
explanations. The key steps are:
1. Feed the machine learning model and the interpretability method (e.g., LIME) to obtain feature contributions.
2. Introduce small, random perturbations to the input and observe the changes in the explanations.
3. Calculate a Lipschitz value that quantifies the sensitivity of the explanations to input changes.
The Lipschitz value is defined by the equation:

                where                                                                                   

By comparing the average Lipschitz values across different interpretability methods, or by ranking instances based 
on these values, one can identify the most robust or unstable explanations within a dataset (see above figures for 
robustness results using P2P Loan dataset).

Enhancing Stability in LIME
To address the instability of LIME, several methods have been proposed:
1. Stabilized-LIME: This approach leverages the Central Limit Theorem to automatically determine the optimal 

number of perturbations needed to ensure the stability of LIME explanations for LARS/LASSO regression 
models. It incorporates hypothesis testing to verify if the number of perturbations is sufficient.

2. DLIME: A deterministic version of LIME that replaces random perturbations with Agglomerative Hierarchical 
Clustering and K-Nearest Neighbor to select relevant training data points. This ensures consistent and stable 
explanations, although the quality depends on the clustering process.

3. OptiLIME: This method addresses LIME's instability through two key improvements:
a. Eliminating the ridge penalty, as LIME's data generation process inherently produces points on the model's 

surface, making the ridge penalty unnecessary.
b. Optimizing the kernel size used in the locality of the LIME explanation to balance the trade-off between 

stability (measured by CSI/VSI scores) and adherence (measured by R^2 score).
4. BayesLIME: Presented in the paper "Reliable Post hoc Explanations: Modeling Uncertainty in Explainability," 

this framework offers a more compelling Bayesian approach. BayesLIME provides a way to quantify the 
uncertainty in LIME's feature importance scores by modeling them as probability distributions and generating 
confidence intervals. This allows for a more reliable interpretation of the explanations, accounting for the inherent 
uncertainty in the LIME process.

These approaches aim to improve the reliability and consistency of LIME explanations, which is crucial for their 
practical application, especially in sensitive domains like finance.


