
        We used Generative Adversarial Networks 
(GANs) to model financial impacts of extreme events, 
improving on traditional methods. By processing 
EM-DAT and WEO data, and testing different GAN 
architectures, we generated realistic synthetic financial 
loss data, enhancing risk assessment and 
management.
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Data:
Sources: Financial loss data from EM-DAT 
(1900-2022) and GDP data from WEO and the World 
Bank (1960-2021).
Content: EM-DAT includes disaster type, location, 
and impact; GDP data provides economic context for 
normalizing losses.

Preprocessing: Extensive data cleaning, 
interpolation for missing values, and normalization 
were conducted to ensure accuracy and consistency.
Purpose: Prepared data for effective GAN model 
training, enabling reliable synthetic data generation 
and meaningful cross-country comparisons.

Purpose: Reduce dimensionality of 
high-dimensional financial loss data to improve 
clustering and GAN performance.
Techniques: Applied methods like PCA, Robust 
PCA, Kernel PCA, and Autoencoders.
PCA/Robust PCA: Captured linear relationships 
and reduced noise, with Robust PCA effectively 
handling outliers.
Kernel PCA: Captured complex, nonlinear 
relationships, enhancing clustering quality for 
datasets with intricate patterns.
Autoencoders: Used neural networks to learn 
efficient data representations, particularly effective 
for nonlinear data and feature extraction.
Outcome: Improved clustering and GAN training 
by emphasizing key data features while reducing 
noise and dimensionality.

Techniques: Employed K-Means++, K-Medoids, 
DBSCAN, and sliding window clustering.
Data Integration: Used geographical, economic, and 
time-series data for more accurate clustering.
Dynamic Time Warping (DTW): Managed time-series 
data to better capture temporal patterns.
Sliding Window Clustering: Updated clusters over 
time, focusing on recent data to improve relevance.
Hierarchical Clustering: Stabilized initial centroid 
selection in K-Means, leading to more consistent 
clusters.

Outcome: Enabled GAN models to better capture 
regional and temporal variations, improving synthetic 
data accuracy.

Purpose: Addressed missing or incomplete financial 
loss data to ensure robust datasets for GAN training.
Brownian Bridge: Smoothly interpolated missing 
time-series data but struggled with extreme values.

FlowGAN: Effectively handled heavy-tailed 
distributions by generating synthetic data for lower 
and higher distribution segments.
Parametric Methods: Focused on accurately 
capturing the tail properties of the data, enhancing 
the realism of generated synthetic data.

 （IQR stands for interquartile range）

Outcome: Produced robust and reliable datasets, 
leading to more accurate and effective GAN model 
training.

Purpose: Generate realistic synthetic financial loss 
data for extreme events, improving risk 
assessment.
DCGAN (Deep Convolutional GAN): Enhanced 
extremeness of generated data, aligning with 
real-world financial loss distributions.
QuantGAN: Targeted financial time series data but 
struggled with capturing heavy tails accurately.
TAGAN (Temporal Attention GAN): Excelled in 
capturing temporal dependencies for individual loss 
data but faced challenges with cumulative losses.

FlowGAN aids imputation by splitting data based on 
quantiles, followed by targeted methods. Combining 
FlowGAN with TAGAN generates improved outputs, 
but Wasserstein distance improvement remains 
limited.
TTGAN (Temporal Transformer GAN): Used 
transformer architecture to better model long-term 
dependencies in time series data, improving 
sequence accuracy.

TTGAN shows improved results after 200 epochs of 
training, but further epochs lead to overfitting. he 
Wasserstein distance stabilizes at around 20,000, 
yet narrow range issues persist.

Result of Loss Simulation by Sliding Window 
Clustering and FlowGAN Imputation

Effective Data Generation: The study successfully 
generated realistic synthetic financial loss data from 
extreme events using advanced GAN architectures.
Improved Risk Modeling: The use of GANs, combined 
with sophisticated data preprocessing, significantly 
enhanced the accuracy of financial risk assessments.
Tailored GAN Models: Different GAN models, such as 
FlowGAN, TAGAN, and TTGAN, were optimized to handle 
the unique challenges posed by extreme event data.


