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Introduction
. . . . . o . . . . . . L We now present a table summarizing our algorithms. Before that we define risk spread as, Algorithm Sharpe MDD
Traditional risk parity provides a way of diversifying a portfolio while preventing excessive risk concentration, providing a way to P s g P € Ratircg’*
construct portfolios good risk diversification. The volatility of risk parity portfolio lies somewhere between the minimum variance RSAS.1) (RCAx) — R (1)) where, re, = (E)i is the risk of asset ; 144
SA(E. 1) = max {RC;(z) — x s =
and the 1/n portfolio that has extensively been studied. However, risk parity portfolios or equal risk contribution portfolios (ERC) " ’ 2
depend only on the covariance matrix of the asset universe and is agnostic to the returns of the assets. Efforts have been made to o
also give a tight* nai N
incorporate returns into risk parity and other risk budgeting methods, but these methodologies produce non-convex optimization We also give a tight* naive bound, R§A < Maxi; Vi min {0, min; ; X ;} ;i AERC 3.65 0.261
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problems that are difficult to solve or relaxations that have no guarantees on the portfolio obtained. This not only makes them hard to v TZEJ’ ) 2
max;; ¥, — min {0, min ; ¥, £
solve using numerical heuristics, but these heuristics give no guarantees on the risk diversification. In this paper, we adopt the < HV—H g ° RAC 3.54 0.211
principle of diversifying risk contributions to improve returns, by satisfying approximate risk parity whilst providing bounds on risk Here, V" is optimal value of the minimum volatility problem, 4
spread and taking returns into account. Mathematically, we provide algorithms (RAH, RAC, AERC), that bound the gap between the min - Val Y 2 34 0.224
risk contributions or risk spread () and allows profitable assets to contribute more to a portfolio than would be allowed through ot E =1 RAH ' ’
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regular risk parity. =1 T (Days)
RS 1/n 3.21 0.408
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Algorithms Summary of Algorithms with Proven Bounds
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Algorithm I: Risk Adjusted Holdings (RAH 1 | |27 Sresaotna
! Solve the problem ! maxi, B (3425 . . goo !
RAH adjusts the the risk contribution based on the : : RAH (IB) ————= Increases (w.r.t ERC) the position on profitable assets i !
return of each asset given by, (y; \ ”«rf'mm{leo ((Z2): 777171 + Bz’ } | H 1 i
H H i P Increases risk contribution of profitable assets, N i
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(where, X is the covariance mat¥ix). make the 1 st Z[\Z»),r,\ > kmax (Se); | VenZ ‘RS can be driven to 0 by tuning /3, unlike RAH z § " ] .
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adjustment by introducing adjusted holdings- : o R : Fony A1 W
S
= L b R
! ! Bmax; {ri} oo F it Bl 25
~ . A | and obtain optimal solution 2" | )* i o i o ) I B T
Thus’ﬂaﬁl g7 the'@fkct of decreasing the H i AERC Mean variance type algorithm providing good bounds on RS N -
: ety Figure 2: Top- Performance of our algorithms on 10 selected smeks in the S&P 500. Bottom-Risk Spread aml s
risk contribution by a 1 ] h
rate that scales with the return of the asset. I i respective bounds across rebalancing periods
RAH then finds portfolio such that, 1 Algorithn 3 R __ 1 3 i . i . . .
| Thnpu x50 750 ' Numerical Experiment: Same X, Increasing Returns Asymptotic Properties of Risk Spread
| Solve the problem :
! . 1 ‘We prove multiple asymptotic properties (in the number of assets) for the risk spread, the most important one being
S : =t : Here, we keep 2 the same across algorithms, and have areturn 7, = 0.2;  for 10 assets. We now show the for AERC,
. S . . 1 | portfolio weights and the risk distribution of the different algorithms S 5 . .
RAC allows risk contributions to scale lincarly with | | Lemma If 7T}, := —J—Z'\f 2 = DB = o(n*), and we set U = 2, then we have that for n > 2,
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Here we solve an optimization problem, 1 :
as shown in algorithm 4 1 | 0.000 e - ——
We show that the optimal solutions to this problem are 1 | 13 £y 1% 150 200
nicely risk diversified w.r.t. total volatility for carefully ! 1 . !
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P ! We test our algorithms on simulated geometric brownian motion, mutual funds and on S&P 500 data. We present real Scan code for complete list of references

world performance for all of our algorithms, along with plots for bounds for risk spread.



