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Factor Models in Finance

● Portfolio value Vt = v(xt) a function of risk factors xt. So time t + 1 P&L

∆Vt+1(∆xt+1) = v(xt +∆xt+1) − v(xt) (1)

● Typically work with a common factor model, e.g.

∆xt+1 = Bft+1 + ξt+1, t = 0,1, . . . (2)

where:

● ft+1 ∈ Rm is the common factor (c.f.) random return vector.

● B = [b1 . . . bm] ∈ Rn×m is the matrix of factor loadings.

● ξt+1’s ∈ Rn are i.i.d. noise vectors.

● Portfolios from many asset classes can be modelled via (1)-(2).
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Standard Scenario Analysis (SSA)

● Can define a scenario by jointly stressing any number k ≤m of the c.f. returns.

e.g. Consider a portfolio of futures and options on the S&P 500. A scenario might
consist of:

● Shift of -5% to value of S&P 500

● Parallel shift of +10 percentage points to implied volatility surface.

● Risk / portfolio manager often doesn’t have an explicit model like (2) at hand.

● Especially true for portfolios containing derivative securities.

● Only a subset of factors - say first l ≤m - are ever considered for stressing.

● In that case SSA works with a “model” of the form

∆xt+1 = B1∶lf
1∶l
t+1
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A Portfolio of Options and Futures on the S&P 500

● Table shows an SSA with P&L for simultaneous stresses to S&P 500 and parallel
moves in implied volatility surface.

● Other factors could be stressed via steeping / flattening of volatility skew and /
or term structure.
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Problems with Standard Scenario Analysis

1. SSA only produces a point estimate of scenario loss - typically interpreted as an
expectation of portfolio loss in a given scenario.

2. SSA implicitly assumes

fs
c

t+1 ∣ (Ft, f
s
t+1) = 0

where fst+1 and fs
c

t+1 denote stressed and unstressed c.f. returns, resp.

3. Could develop a model and set

fs
c

t+1 = Et[fs
c

t+1 ∣ fst+1]. (3)

But (3) ignores uncertainty in ξt+1 and fs
c

t+1 ∣ (Ft, f
s
t+1).

4. SSA generally not back-tested since scenarios (typically) have zero probability.

5. SSA not robust to misspecified factors.

6. SSA not robust to adversarial portfolio selection.
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Research Goals / Contributions

● Go beyond SSA by insisting on quantiles and hence prediction intervals (PIs) for
scenario losses.

● PIs are probability forecasts and hence amenable to backtesting via e.g.
proper scoring rules.

● Provide coverage guarantees for the PIs

● Conditional guarantees via a new non-parametric kernel-based algorithm.

● Marginal guarantees via conformal prediction methods.

● Address issues with SSA.
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Scenario Analysis with Uncertainty Quantification
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The Pinball Loss Function

Definition 1

The pinball loss function ℓβ(⋅, ⋅) for Y, y ∈ R and quantile level β ∈ [0,1] is

ℓβ(Y, y) ∶= β ⋅ (Y − y)+ + (1 − β) ⋅ (y − Y )+.

● Pinball loss function is piecewise-linear and convex.

● It is also a proper scoring rule for the β-quantile Qβ(Y ) of Y so that

Qβ(Y ) = argmin
y∈R

E[ℓβ(Y, y)].
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Kernel Scenario Analysis

● Have a history vector HT = (xT , fT ).
● Feature vector WT+1(z) ∶= (HT ,z) where z ∶= f st+1 is subset of c.f. returns

stressed at time t in given time t + 1 scenario.

● KSA algorithm takes as input a kernel κ(⋅, ⋅) and expectation predictor φ for
scenario loss.
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Algorithm Kernel Scenario Analysis (KSA)

Input: Target confidence 1 − α
1: for t = 1, . . . , T do
2: Set Wt ← (Ht−1,zt)

3: Set Yt ← Lt − φ(Wt) (loss residual)
4: end for

5: For β ∈ [0,1] define empirical pinball loss function

ℓ̂T (y,w;β)← ∑
T
t=1 κ(Wt,w) ⋅ ℓβ(Yt, y)
∑T

t=1 κ(Wt,w)

6: Set WT+1(z)← (HT ,z)
7: For β ∈ {α/2,1 − α/2} compute empirical quantiles

Q̂T (WT+1(z);β)← argmin
y∈R

ℓ̂T (y,WT+1(z);β)

8: Return prediction interval (PI)

CT (z)← φ(WT+1(z)) + [Q̂T (WT+1(z);α/2), Q̂T (WT+1(z); 1 − α/2)]
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Kernel Scenario Analysis

Assumption 1

● {Wt}∞t=0 is a stationary process.

● Independence of Yt ∣Wt’s.

● {Wt}∞t=0 ϕ-mixing and time reversed ϕ-mixing.

● Kernel function η exists so that η(w,w) = 1 and 0 ≤ η(w,w′) ≤ 1 for w,w′ ∈W.

● Also have

DTV(πY ∣W (⋅ ∣ w)∣∣πY ∣W (⋅ ∣ w′)) ≤ 1 − η(w,w′), ∀w,w′ ∈W,

● Other (mild) technical conditions
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Kernel Scenario Analysis

Theorem 1

Under Assumption 1, for any δ > 0, any scenario z, and for sufficiently large T ,

∣PLT+1(LT+1 ∈ CT (z) ∣WT+1(z)) − (1 − α)∣ ≤

2 ⋅ (1 − EW [κ(W,WT+1(z)) ⋅ η(W,WT+1(z))]
EW [κ(W,WT+1(z))]

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bias

+C ⋅
√

logT

T
+D ⋅

(1 + 2∑T
k=1 ϕ(k))

√
log

16

δ√
T

+O ( 1√
T
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
variance

with probability at least 1 − δ.

16



Standard Scenario Analysis

Problem Motivation

Related Literature

Kernel Scenario Analysis

Adaptive Conformal Scenario Analysis

Numerical Experiments

Conclusions and Further Research

17



Adaptive Conformal Scenario Analysis

● Conformal prediction algorithms developed to provide prediction intervals
(regression) or prediction sets (classification) with valid coverage guarantees and
minimal assumptions.

● Often applied to both probabilistic methods, e.g. logistic regression, and
non-probabilistic methods, e.g. deep learning, random forests.

● Main focus on IID data but algorithms recently developed for time-series data.

● We adopt algorithm of Gibbs and Candès (2021) to scenario analysis setting

● Model agnostic and takes as input a quantile predictor gt.

18



Algorithm Adaptive Conformal Scenario Analysis (ACSA)

Input: Target confidence 1 − α, step size γ, quantile predictor g1

1: Set β1 = α
2: for t = 1, . . . , T do
3: For any stress scenario z, construct prediction interval

Ct(z)← [gt(Wt+1(z);βt/2), gt(Wt+1(z); 1 − βt/2)]

4: Observe Lt+1 and zt+1, and compute

errt+1 ← 1{Lt+1 ∉ Ct(zt+1)}

5: Update
βt+1 ← βt + γ ⋅ (α − errt+1)

6: end for



Adaptive Conformal Scenario Analysis

Assumption 2

Quantile predictor gt(Wt+1(z);β) satisfies

P(Lt+1 ∈ [gt(Wt+1(z); 0), gt(Wt+1(z); 1)] ∣Wt+1(z)) = 1.

● Extend gt for β /∈ [0,1] via

gt(Wt+1(z);β) = {
gt(Wt+1(z); 0), for β < 0
gt(Wt+1(z); 1), for β > 1.

Theorem 2 (Gibbs and Candès 2021)

Under Assumption 2, the prediction interval Ct(⋅) generated by Algorithm 5 satisfies

∣ 1
T

T

∑
t=1

1{Lt+1 ∈ Ct(zt+1)} − (1 − α)∣ ≤
max{α,1 − α} + γ

Tγ
a.s.

In particular, as T →∞, the empirical coverage rate converges to 1 − α a.s.
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Adaptive Conformal Scenario Analysis

● Theorem provides a calibration / coverage guarantee.

● It says nothing about sharpness / precision, i.e. width of PIs, which depends on
quality of gt.

e.g. Suppose gt returns a constant C for any β ∈ (0,1) and Lt a continuous r.var.

● Then βt’s deterministic and

Ct(zt+1) = {
[C,C], if βt ∈ (0,1)
Supp(Lt+1), otherwise.

● Ct(zt+1) = Supp(Lt+1) at least 100 × (1 − α)% of the time.

● Better gt’s generally producer sharper PIs.
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But ACSA Only Provides a Marginal Guarantee
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Numerical Experiments

● Portfolio consists of equal positions on approx 90 European options on S&P 500
and S&P 500 itself.

● Ground truth is
∆xt+1 = Bft+1 + ξt+1.

● Common factor return ft+1 ∈ R4

● First component f(1)t+1 is log return of S&P 500 with daily vol ∼ Garch(1,1)
● Other components are implied volatility factors and satisfy

f(2∶4)t+1 =Gf(2∶4)t + ϵt+1.

● Scenarios are joint stresses to f(1∶2)t+1 , i.e S&P 500 return and first implied volatility
factor.
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● Scenarios are joint stresses to f(1∶2)t+1 , i.e S&P 500 return and first implied volatility
factor.
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Numerical Experiments

Algorithm Variants Coverage PI Length ↓ CRPS ↓
Oracle 90.0% 2.56 0.452

Empirical quantile
Vanilla 72.4% 15.32 0.653
SSA 77.1% 12.38 0.631

ACSA
Linear-gt 91.3% 8.63 0.572
NN-gt 90.9% 4.14 0.519

Oracle-gt 90.4% 2.73 0.464

KSA Ht = ft

φt = 0 84.5% 4.17 0.482
SSA-φt 87.2% 3.31 0.474
NN-φt 89.6% 3.14 0.469

Oracle-φt 89.7% 3.09 0.461

KSA NN-φt misspecified
Ht = f(1∶3)t 88.7% 3.43 0.471

Ht = f(1∶2)t 84.2% 3.17 0.498
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Consistency of ACSA and KSA

Parallel Shift
Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5
-3 -5.1 -4.3 -2.3 -0.7 1.1 2.6 5.4
-2 -4.6 -3.7 -1.9 -0.5 0.5 1.7 4.1
-1 -2.5 -1.7 -0.4 0.4 0.7 1.5 3.6
0 -1.3 -0.5 0.3 0.9 1.3 1.7 2.9
1 0.7 1.1 1.1 1.4 2.3 2.4 2.7
2 2.3 2.4 2.4 2.6 3.1 4.4 5.3
3 4.2 4.6 4.9 5.4 6.2 6.8 7.5

ACSA with Oracle gt

Parallel Shift
Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5
-3 -5.0 -4.4 -2.2 -0.9 0.8 2.5 5.1
-2 -4.5 -3.5 -2.2 -0.8 0.2 1.5 4.2
-1 -2.7 -1.6 -0.8 0.5 0.9 1.5 3.9
0 -1.1 -0.5 -0.1 0.8 1.1 1.4 2.8
1 0.8 1.3 1.4 1.5 2.0 2.2 2.7
2 2.0 2.3 2.4 2.8 2.9 3.9 4.8
3 4.4 4.5 4.8 5.2 6.1 6.9 7.2

KSA with Oracle φt
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ACSA with Oracle vs SSA

Parallel Shift
Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5
-3 -5.1 -4.3 -2.3 -0.7 1.1 2.6 5.4
-2 -4.6 -3.7 -1.9 -0.5 0.5 1.7 4.1
-1 -2.5 -1.7 -0.4 0.4 0.7 1.5 3.6
0 -1.3 -0.5 0.3 0.9 1.3 1.7 2.9
1 0.7 1.1 1.1 1.4 2.3 2.4 2.7
2 2.3 2.4 2.4 2.6 3.1 4.4 5.3
3 4.2 4.6 4.9 5.4 6.2 6.8 7.5

ACSA with Oracle gt

Parallel Shift
Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5
-3 -2.8 -2.3 -1.6 -0.8 0.3 1.5 3.0
-2 -2.2 -1.9 -1.4 -0.8 0.0 1.0 2.1
-1 -1.5 -1.3 -1.0 -0.5 0.0 0.8 1.7
0 -0.6 -0.5 -0.3 0.0 0.4 0.9 1.6
1 0.4 0.5 0.6 0.7 1.0 1.3 1.8
2 1.5 1.5 1.5 1.6 1.8 2.0 2.3
3 2.5 2.6 2.6 2.6 2.7 2.8 3.0

Standard Scenario Analysis
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Conclusions and Further Research

Conclusions

Two algorithms for scenario analysis prediction intervals:

1. ACAS algorithm - simple application of Gibbs and Candès (2021) from conformal
prediction literature

● Model agnostic. Marginal coverage guarantees.

2. KSA algorithm using ideas from non-parametric statistics and uncertainty
calibration literatures

● Conditional coverage guarantees. Not good with extreme scenarios.

3. Adaptive KSA algorithm. Convergence rate of O (t−
1

dW +2 ) for coverage

guarantee when:

● Stationary distribution of {Wt}∞t=0 is Gaussian.

● κht and η RBF kernels with ht decreasing in t.

Ongoing Research

● More extensive numerical experiments.

● Combining ACSA with KSA.
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Thank you!
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