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• Training is based on the final task rather than predicted performance. 

Distributional robustness in end-to-end learning systems

Inputs Prediction layer Decision layer Task loss



Distributional robustness in end-to-end learning systems

End-to-end learning

Introduction Prediction Decision Robustness Training Results

Inputs Prediction layer Decision layer Task loss



End-to-end learning

Introduction Prediction Decision Robustness Training Results

Inputs Prediction layer Decision layer

‣ The decision layer is a portfolio optimization problem.

Distributional robustness in end-to-end learning systems

Task loss



End-to-end learning

Introduction Prediction Decision Robustness Training Results

Inputs Prediction layer Decision layer

‣ The decision layer is a portfolio optimization problem.


• Suffers from sensitivity to prediction errors. 

Distributional robustness in end-to-end learning systems

Task loss



End-to-end learning

Introduction Prediction Decision Robustness Training Results

Inputs Prediction layer Decision layer

‣ The decision layer is a portfolio optimization problem.


• Suffers from sensitivity to prediction errors. 


• We will use robustness to mitigate model error

Distributional robustness in end-to-end learning systems
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t z

1

Deviation risk measure



Inputs Prediction layer Decision layer

{x}tj=t�T

{y}t+v
j=t�T

1
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j=t�T

1

Decision layer
‣           : Optimal portfolio 


‣           : Convex deviation risk measure


‣           : Predicted portfolio return


‣           : Risk aversion parameter

End-to-end learning

Introduction Prediction Decision Robustness Training Results

Optimization problem

Task loss

z⇤
t = argmin

z2Z
f✏(z)� � · ŷ>
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j=t�T

1

Decision layer
‣           : Optimal portfolio 


‣           : Convex deviation risk measure


‣           : Predicted portfolio return


‣           : Risk appetite

End-to-end learning

Introduction Prediction Decision Robustness Training Results

Optimization problem

Task loss

z⇤
t = argmin

z2Z
f✏(z)� � · ŷ>
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Derived from a set of past prediction errors
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‣ Nominal assumption: All scenarios are equally likely, 


‣ Can we protect against scenario probabilities changing in the future?
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‣     : probability mass function


‣ Distance measure: -divergence (e.g., Kullback-Leibler, Hellinger)ϕ
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ŷ = {g✓(xj)}tj=t�T

✏ = {yj � ŷj}t�1
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Training

‣ The model is trained through gradient descent.
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Training

‣ Backpropagation through an optimization problem is possible by differentiating 
the system of equations arising from the KKT optimality conditions.


‣ Both     and     are learned parameters to enhance out-of-sample performance. 
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‣ Data: Weekly, 07–Jan–2000 to 01-Oct-2021


• Assets: 20 stocks from the S&P500


• Features: 8 Fama-French factors


‣ System:


‣ Prediction layer: Linear 


‣ Task loss: Sharpe ratio + prediction MSE

‣ Training: 07–Jan–2000 to 18–Jan–2013


• Prediction layer initialized to OLS weights


• For each point prediction, prediction errors 
computed from   observations


• The Sharpe ratio is computed over the 
subsequent  weeks


• Time series split cross-validation is used to 
calibrate the learning rate and number of 
epochs


‣ Testing: 25–Jan–2013 to 01–Oct–2021


• Systems are retrained every 2 years 

T = 104

v = 13
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‣ Equal weight


‣ Predict-then-optimize


‣Nominal


‣DR (Hellinger-based):
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‣ End-to-end system with a robust decision layer that explicitly incorporates 
prediction model risk.


• By design, we pass both the prediction and a set of prediction errors to the 
decision layer. 


• Furthermore, we introduce robustness by taking the worst-case risk over a set of 
probability measures.


‣ Use convex duality to show that the DR decision layer is computationally tractable. 


‣ Risk and robustness parameters are learned directly from data. 


• Being able to learn these parameters relieves practitioners from the challenge of 
determining them a priori. 
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