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• Information is passed between prediction and decision layers during training.
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Inputs Prediction layer Decision layer

‣ The decision layer is a portfolio optimization problem.


• Suffers from sensitivity to prediction errors. 


• We will use robustness to mitigate model error
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Derived from a set of past prediction errors
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‣ Nominal assumption: All scenarios are equally likely, 


‣ Can we protect against scenario probabilities changing in the future?
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‣     : probability mass functionp
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t z

1

DR decision layer

Probability simplex

Nominal decision layer
z⇤
t = argmin

z2Z
f✏(z, q)� � · ŷ>
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‣     : probability mass function


‣ Distance measure: -divergence (e.g., Kullback-Leibler, Hellinger)ϕ
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t z

1

Task loss

z⇤
t = argmin

z2Z
max

p2P(�)
f✏(z,p)� � · ŷ>
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j=t�T

1

‣ Standard supervised learning: loss function = prediction error.

z⇤
t = argmin

z2Z, ��0, ⇠, c
f�
✏ (z, c,�, ⇠)� � · ŷ>
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j=t�T

1

‣ Standard supervised learning: loss function = prediction error. 

‣ End-to-end system: Task loss = out-of-sample performance of the decision.  

‣ Task loss function ≠ objective function of the decision layer. 

z⇤
t = argmin

z2Z, ��0, ⇠, c
f�
✏ (z, c,�, ⇠)� � · ŷ>
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t z

1



End-to-end learning

Introduction Prediction Decision Robustness Training Results

Task loss

Inputs Prediction layer DR decision layer Task loss

{x}tj=t�T

{y}t+v
j=t�T

1
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j=t�T

1

‣ Define the task loss as the financial performance over the next  time steps.


‣ For example, the task loss may be defined as the Sharpe ratio:

v

l
�
z⇤
t , {yj}t+v

j=t

�
= �

mean
�
{y>

j z
⇤
t }t+v

j=t

�

std
�
{y>

j z
⇤
t }t+v

j=t

�

1
z⇤
t = argmin

z2Z, ��0, ⇠, c
f�
✏ (z, c,�, ⇠)� � · ŷ>

t z

1



End-to-end learning

Introduction Prediction Decision Robustness Training Results

Task loss

Inputs Prediction layer DR decision layer Task loss

{x}tj=t�T

{y}t+v
j=t�T

1
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Training

‣ The model is trained through gradient descent.
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Training

‣ Backpropagation through an optimization problem is possible by differentiating 
the system of equations arising from the KKT optimality conditions.


‣ Both     and     are learned parameters to enhance out-of-sample performance. 
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‣ Data: Weekly, 07–Jan–2000 to 01-Oct-2021


• Assets: 20 stocks from the S&P500


• Features: 8 Fama-French factors


‣ System:


‣ Prediction layer: Linear 


‣ Task loss: Sharpe ratio + prediction MSE

‣ Training: 07–Jan–2000 to 18–Jan–2013


• Prediction layer initialized to OLS weights


• For each point prediction, prediction errors 
computed from   observations


• The Sharpe ratio is computed over the 
subsequent  weeks


• Time series split cross-validation is used to 
calibrate the learning rate and number of 
epochs


‣ Testing: 25–Jan–2013 to 01–Oct–2021


• Systems are retrained every 2 years 

T = 104

v = 13



Numerical experiment: Competing models

End-to-end learning

Introduction Prediction Decision Robustness Training Results

‣ Equal weight:      
zt = 1/n



End-to-end learning

Introduction Prediction Decision Robustness Training Results
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‣ Predict-then-optimize:   Prediction layer      Fixed OLS weights
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‣ Equal weight


‣ Predict-then-optimize


‣Nominal


‣DR (Hellinger-based):
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‣ End-to-end system with a robust decision layer that explicitly incorporates 
prediction model risk.


• By design, we pass both the prediction and a set of prediction errors to the 
decision layer. 


• Furthermore, we introduce robustness by taking the worst-case risk over a set of 
probability measures.


‣ Use convex duality to show that the DR decision layer is computationally tractable. 


‣ Risk and robustness parameters are learned directly from data. 


• Being able to learn these parameters relieves practitioners from the challenge of 
determining them a priori. 



References
‣ Amos, B. and Kolter, J. Z. Optnet: Differentiable optimization as a layer in neural 

networks. In International Conference on Machine Learning, pp. 136–145. PMLR, 2017. 


‣ Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melen- berg, B., and Rennen, G. 
Robust solutions of optimization problems affected by uncertain probabilities. 
Management Science, 59(2):341–357, 2013.


‣ Calafiore, G. C. Ambiguous risk measures and optimal robust portfolios. SIAM Journal 
on Optimization, 18(3): 853–877, 2007. 


‣ Donti, P. L., Amos, B., and Kolter, J. Z. Task-based end-to-end model learning in 
stochastic optimization. In Proceedings of the 31st International Conference on Neural 
Information Processing Systems, pp. 5490–5500, 2017. 



Thank you!

‣ Costa, G., & Iyengar, G. N. (2022). Distributionally Robust End-to-End Portfolio 
Construction. arXiv preprint arXiv:2206.05134.

A draft version our paper is now available


