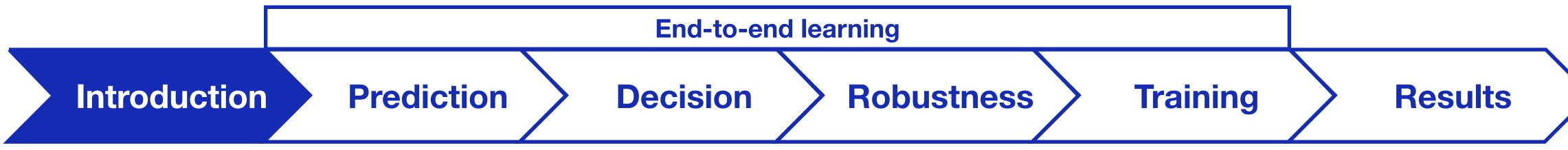
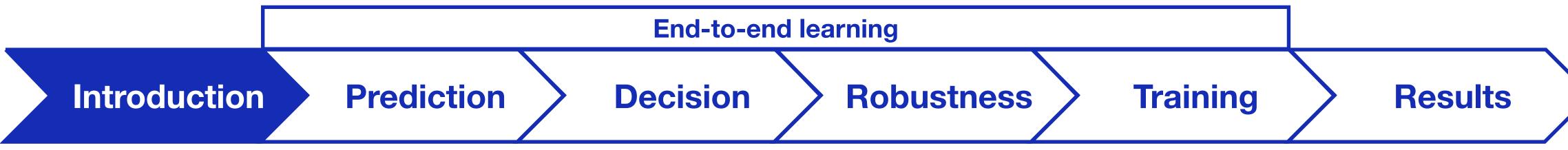
Distributionally Robust End-to-End Portfolio Construction

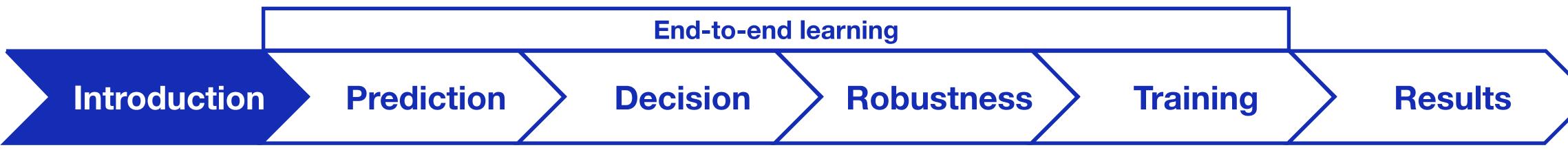
- 8th Annual Bloomberg-Columbia **Machine Learning in Finance Workshop**
 - September 2022

- **Giorgio Costa and Garud N. Iyengar**
- Industrial Engineering and Operations Research COLUMBIA ENGINEERING

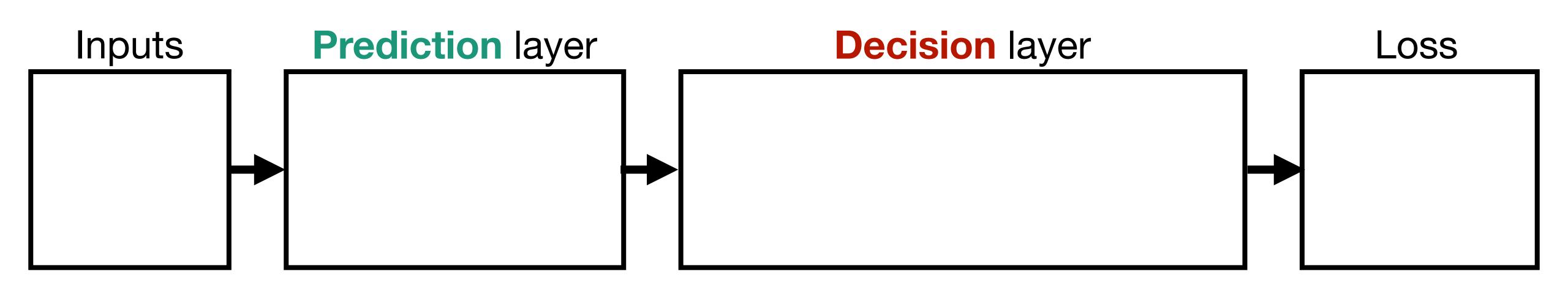




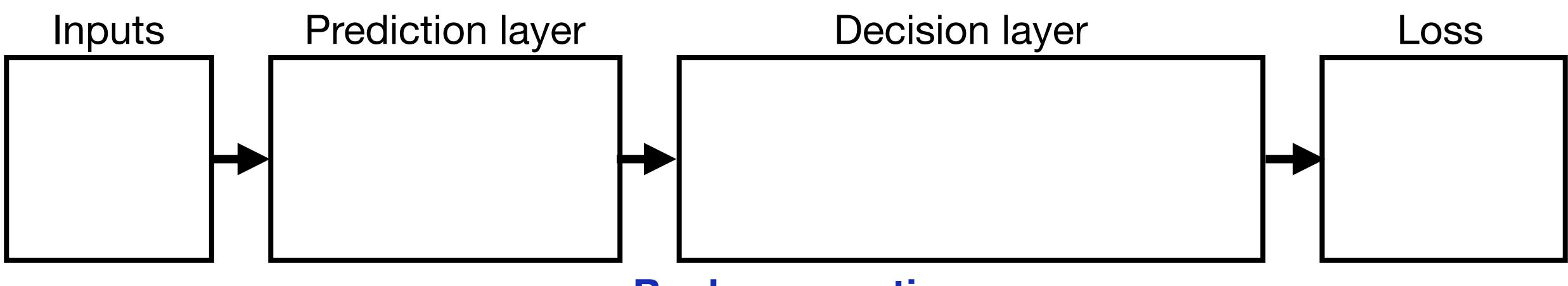
End-to-end: Integrate the prediction and optimization steps.

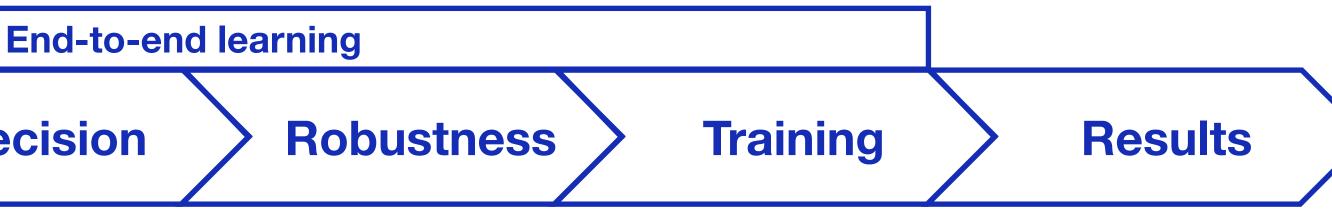


End-to-end: Integrate the prediction and optimization steps.



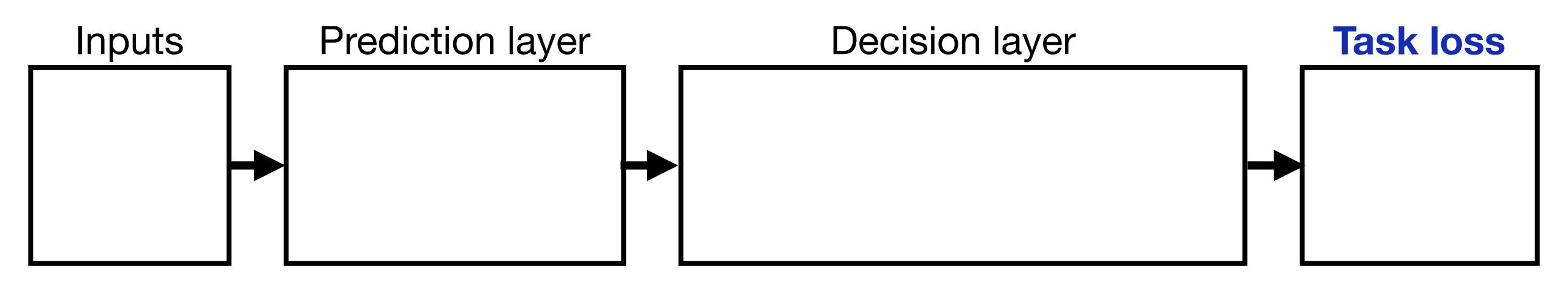
- End-to-end: Integrate the prediction and optimization steps.
 - Information is passed between prediction and decision layers during training.

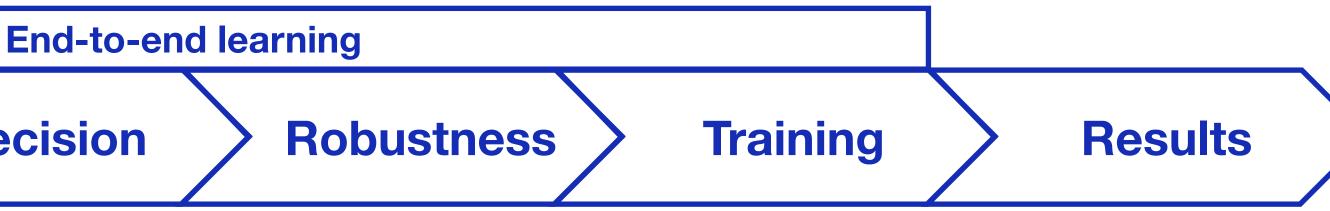


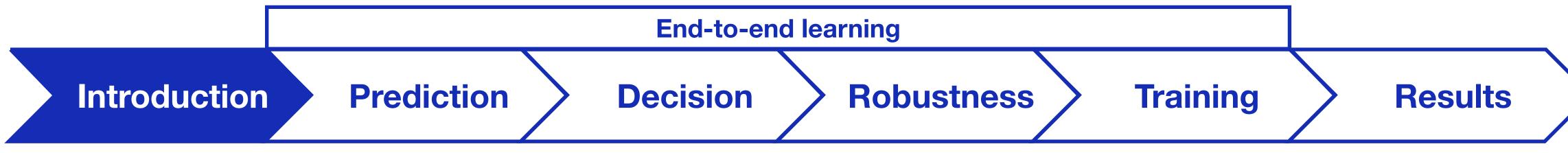


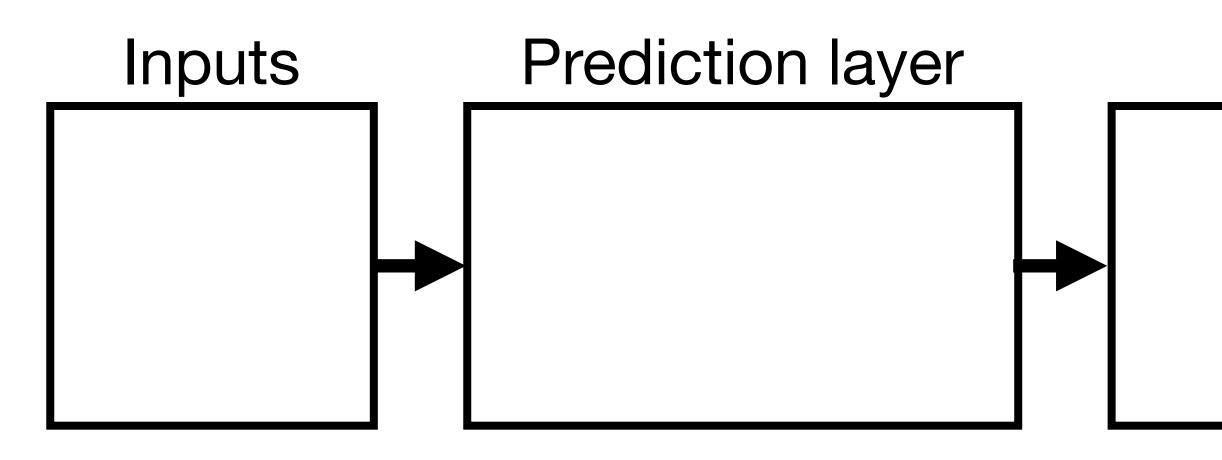
Backpropagation

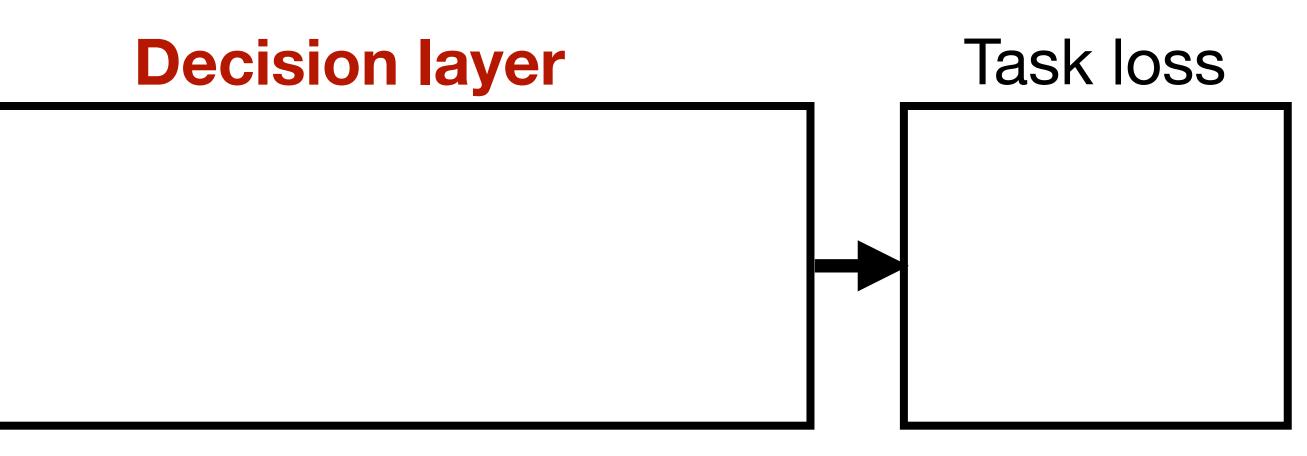
- End-to-end: Integrate the prediction and optimization steps.
 - Information is passed between prediction and decision layers during training.
 - Training is based on the <u>final task</u> rather than predicted performance.

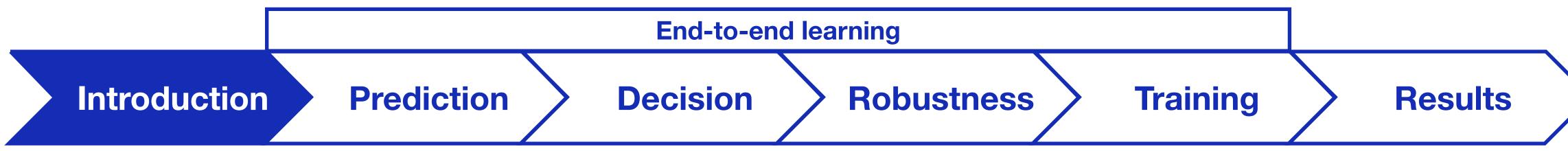




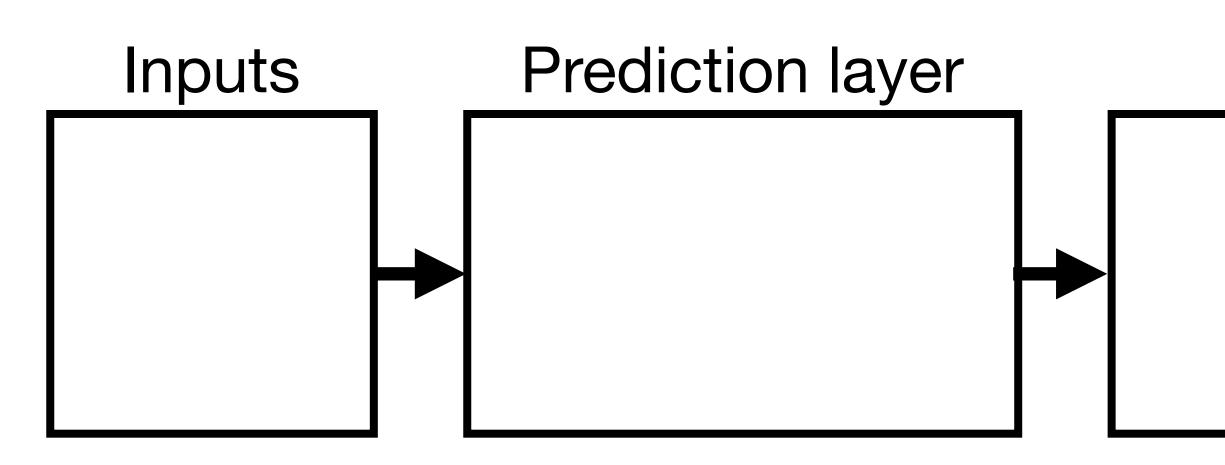


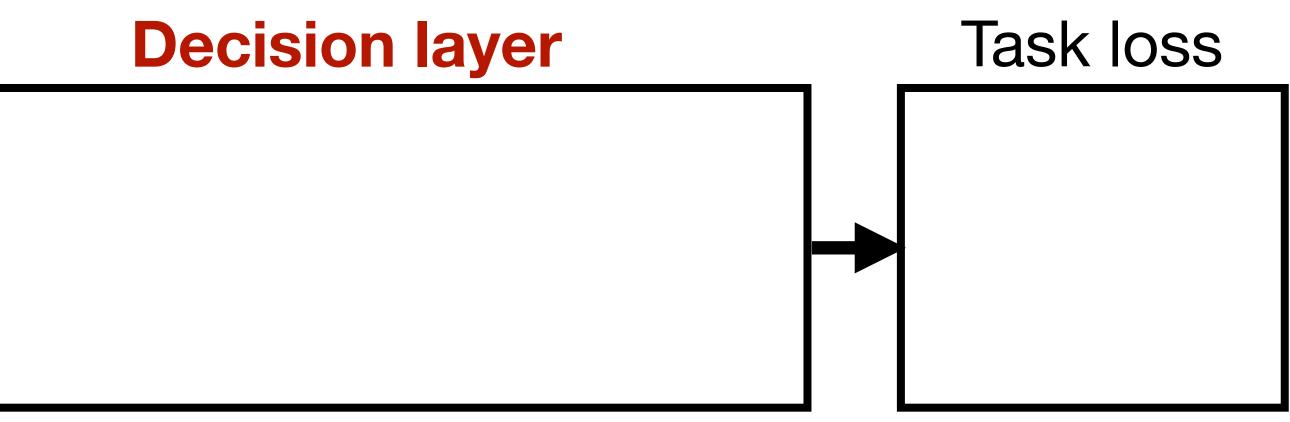


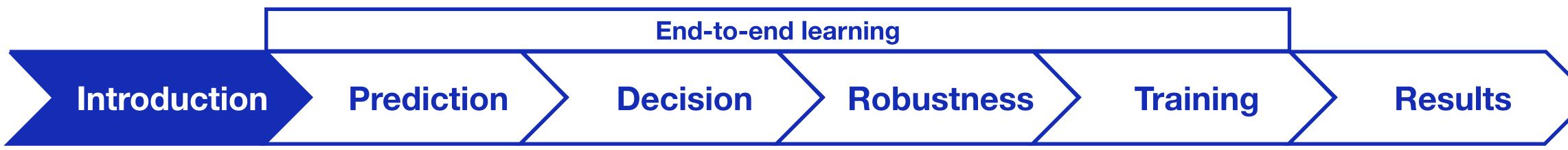




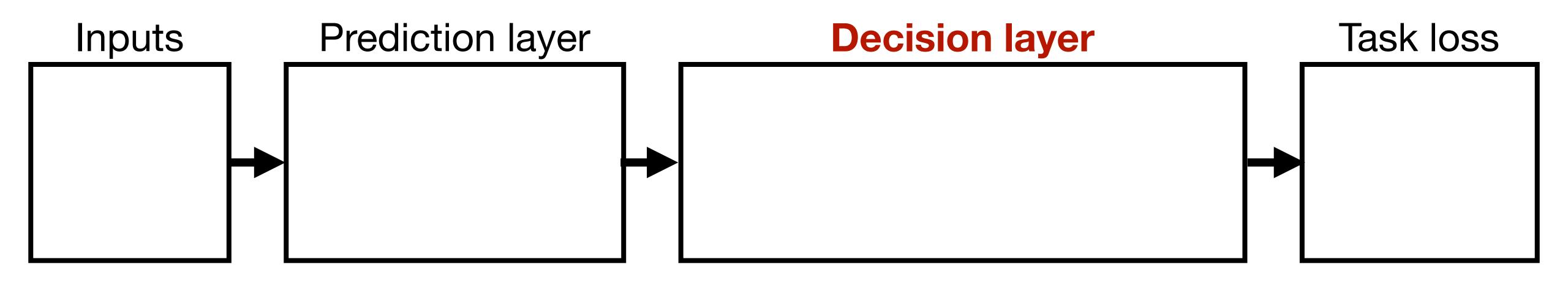
The decision layer is a portfolio optimization problem.

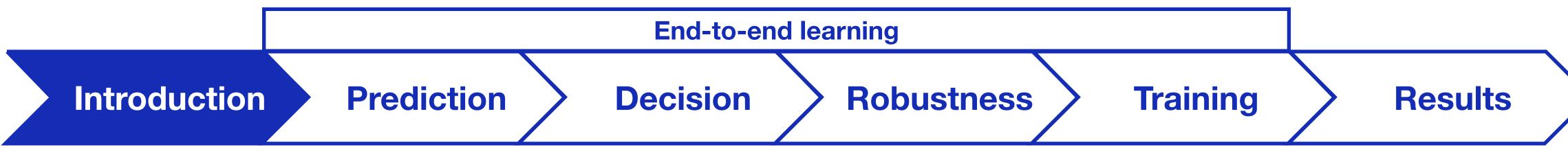




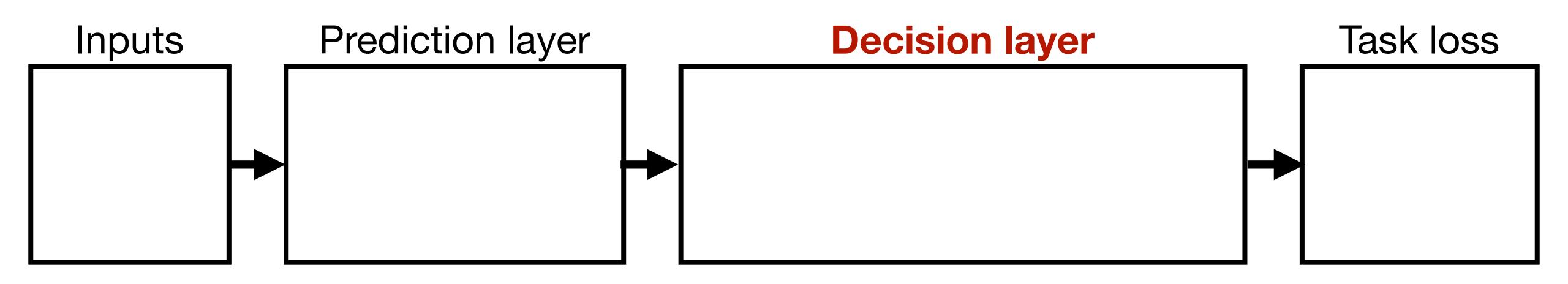


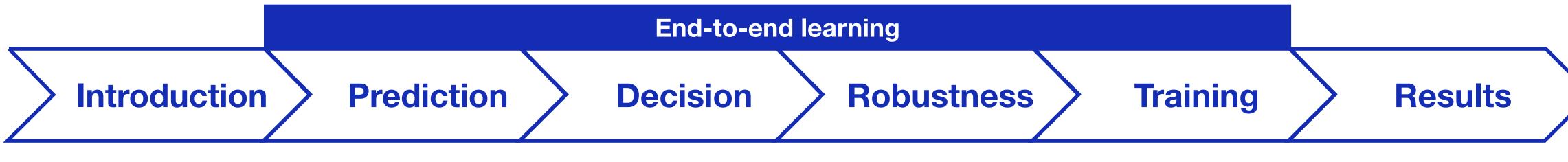
- The decision layer is a portfolio optimization problem.
 - Suffers from sensitivity to prediction errors.



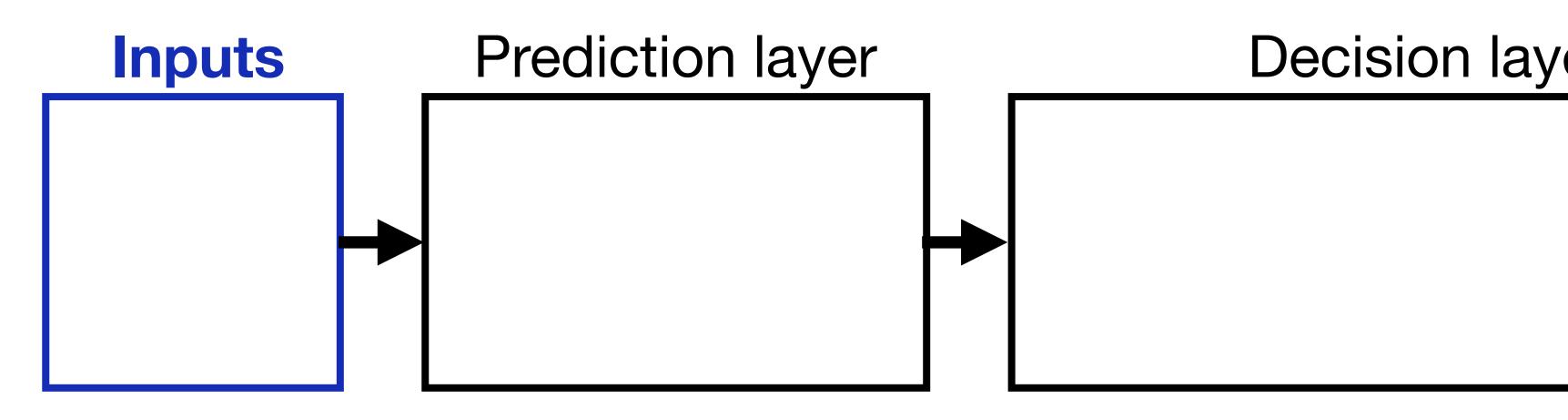


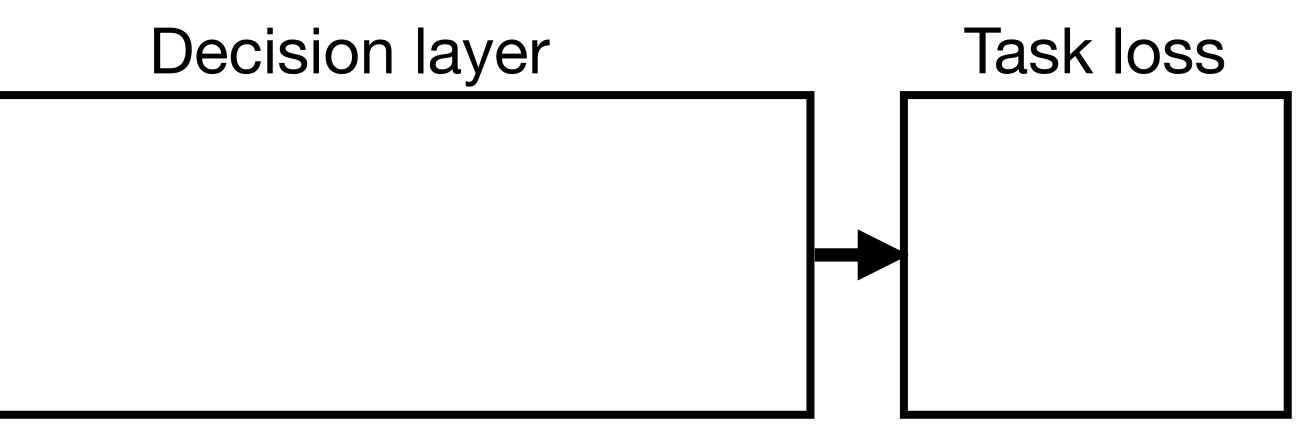
- The decision layer is a portfolio optimization problem.
 - Suffers from sensitivity to prediction errors.
 - We will use robustness to mitigate model error

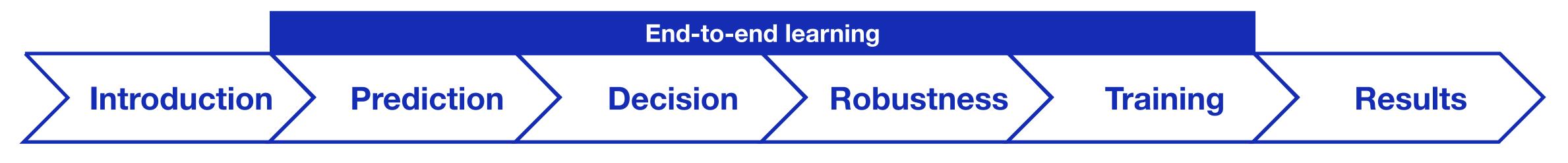




Data: features and realizations

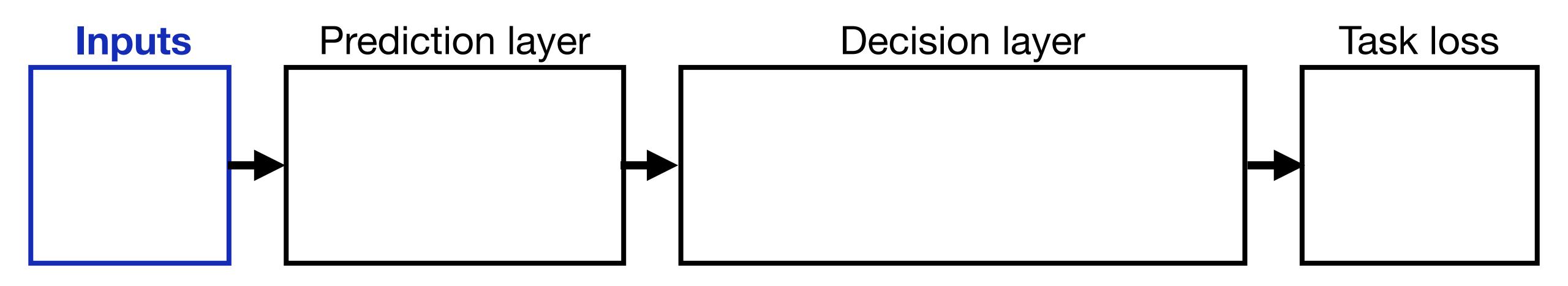


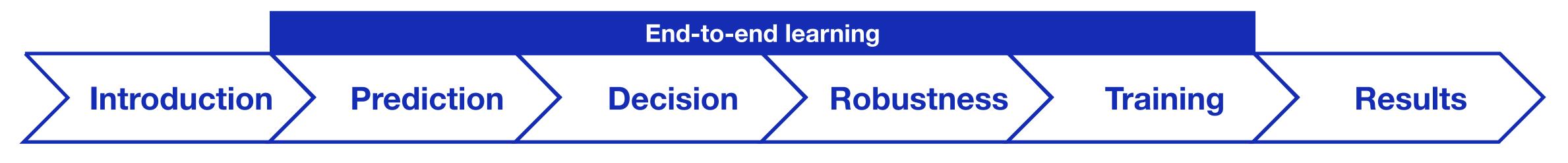




Data: features and realizations

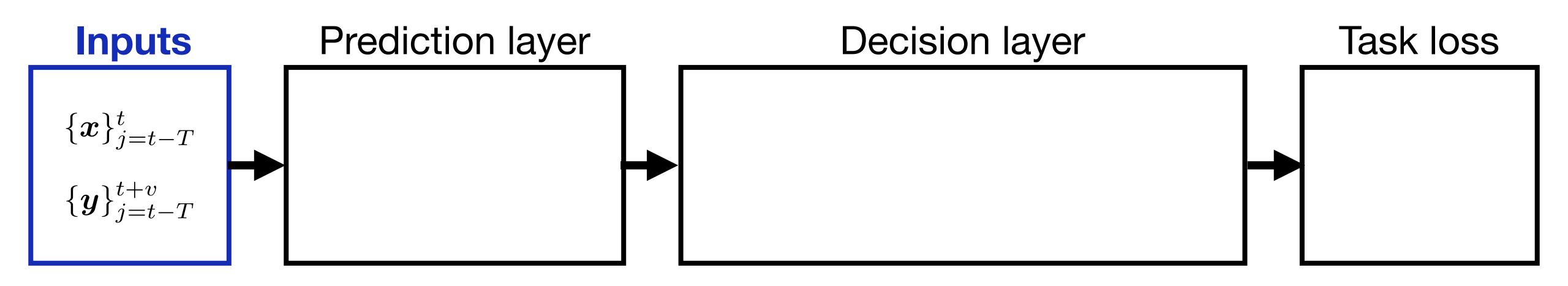
- $\{x\}_{j=t-T}^t : Time series of financial factors$
- $\{y\}_{j=t-T}^{t+v} : Time series of asset returns$





Data: features and realizations

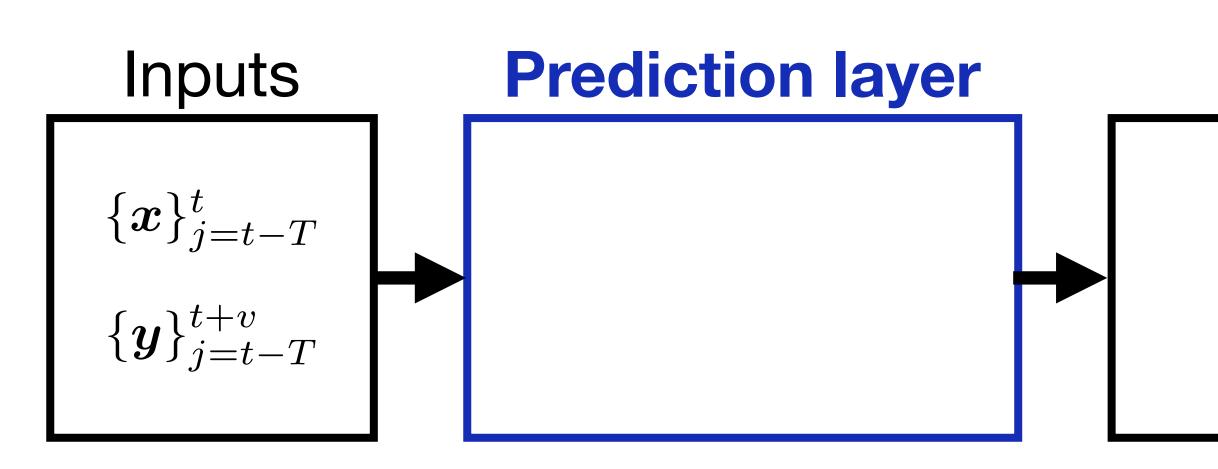
- $\{x\}_{j=t-T}^t : Time series of financial factors$
- $\{y\}_{j=t-T}^{t+v} : Time series of asset returns$

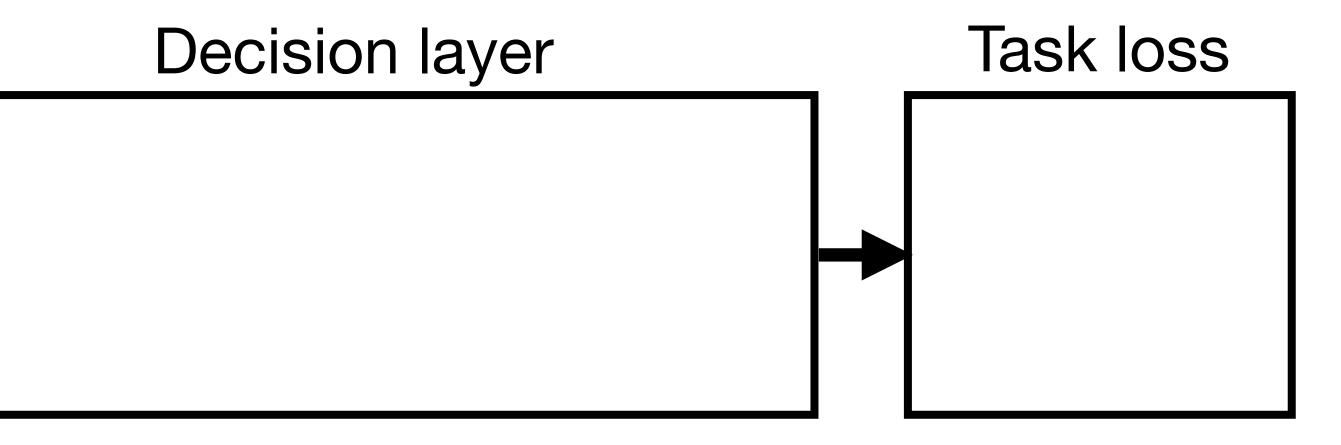


Prediction

Decision

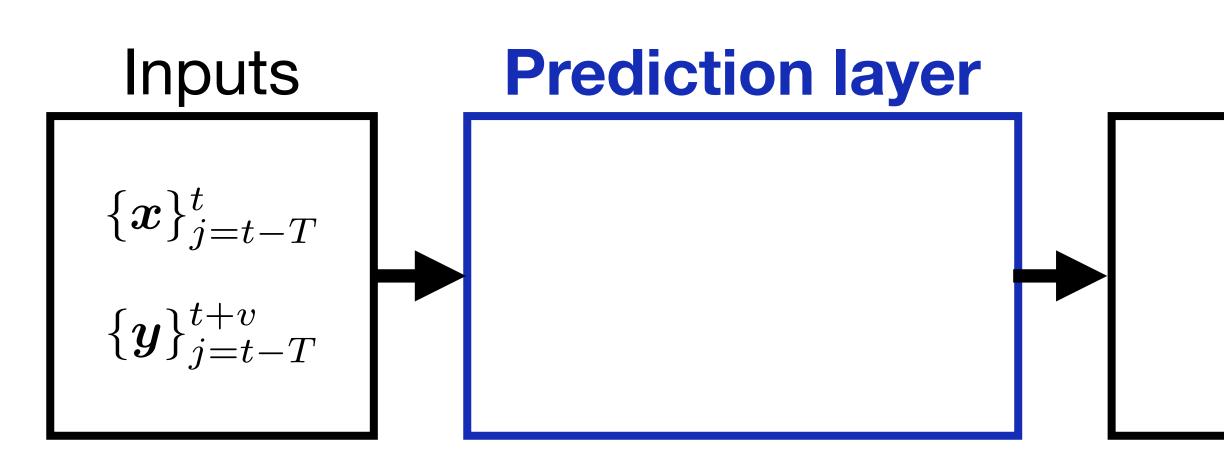
Prediction layer



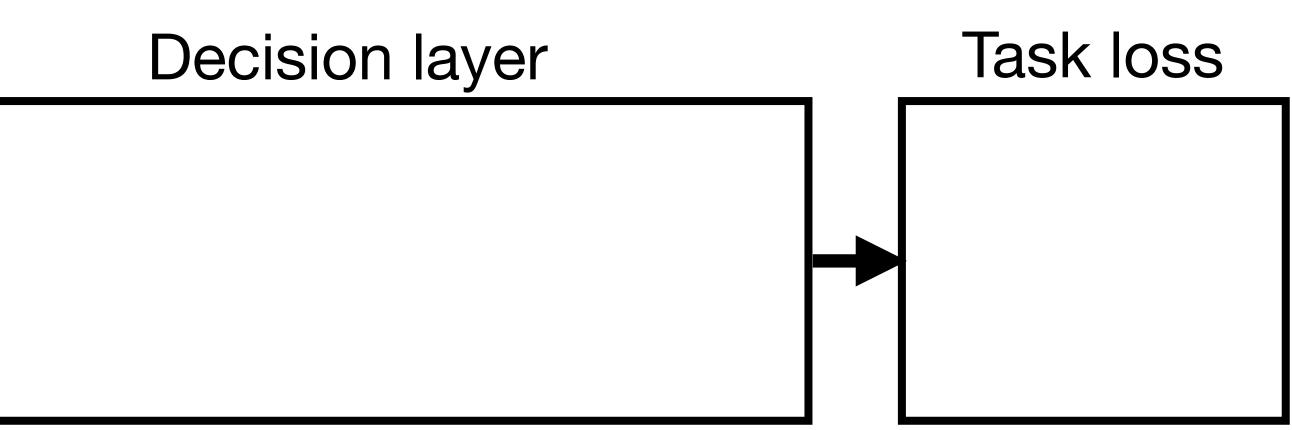


Decision

Prediction layer



: Prediction model that maps features x_j to predictions \hat{y}_j

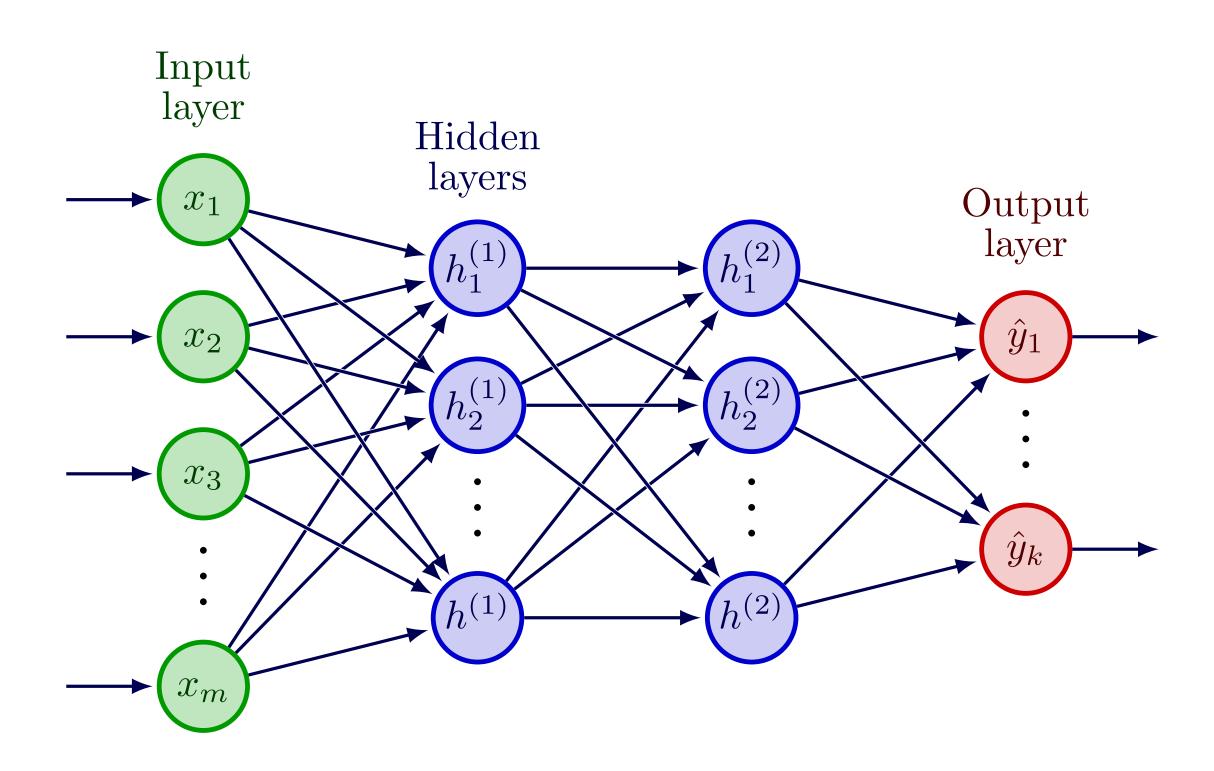


Decision

Prediction layer

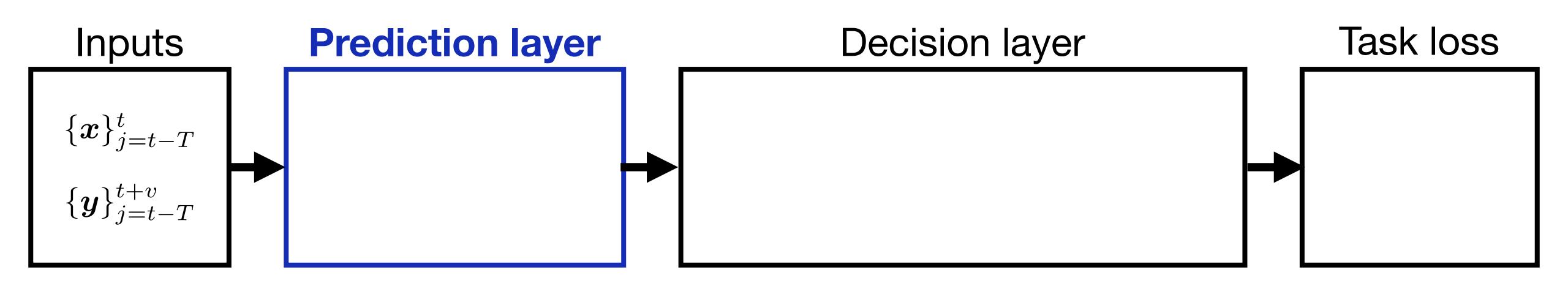
The prediction model can have any form that allows for gradient-based learning

: Prediction model that maps features x_i to predictions \hat{y}_i



Prediction layer

- $\blacktriangleright g_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$
- $\hat{y} = \{g_{\theta}(x_j)\}_{j=t-T}^t$: Predicted asset returns



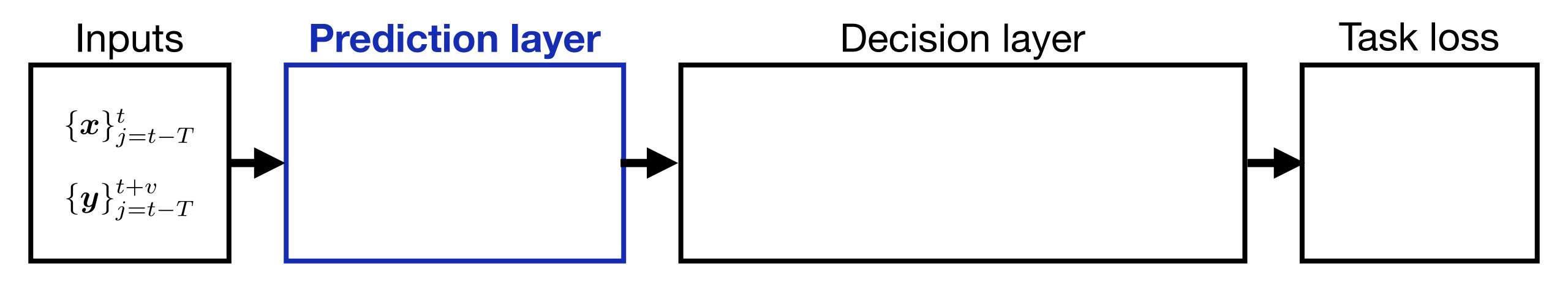
: Prediction model that maps features x_i to predictions \hat{y}_i

Decision

Prediction layer

- $\blacktriangleright g_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$: Prediction model that maps features x_i to predictions \hat{y}_i • $\hat{y} = \{g_{\theta}(x_j)\}_{j=t-T}^t$: Predicted asset returns
- ► $\epsilon = \{y_j \hat{y}_j\}_{j=t-T}^{t-1}$: Prediction errors

Prediction

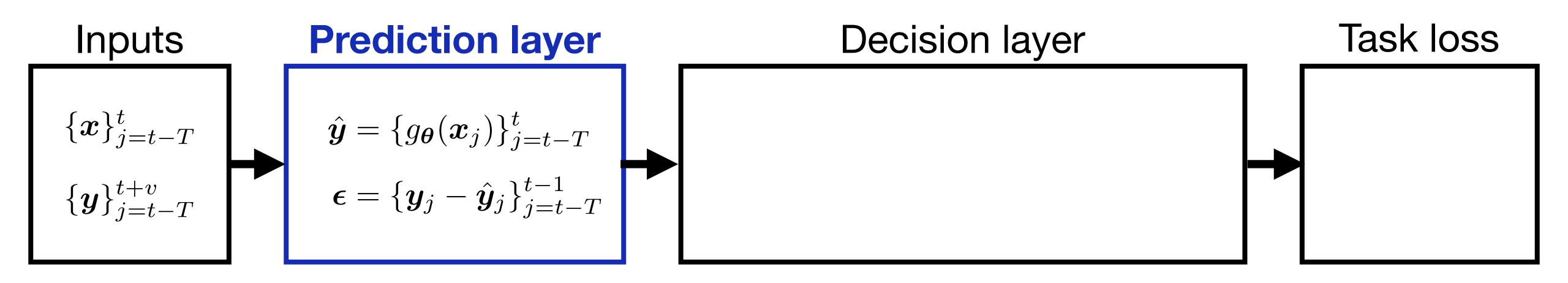


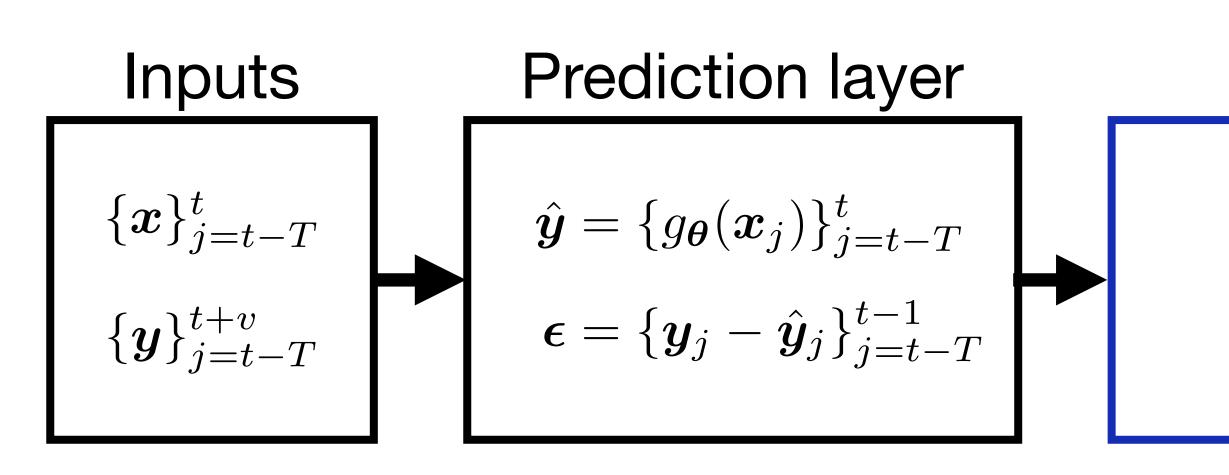
Decision

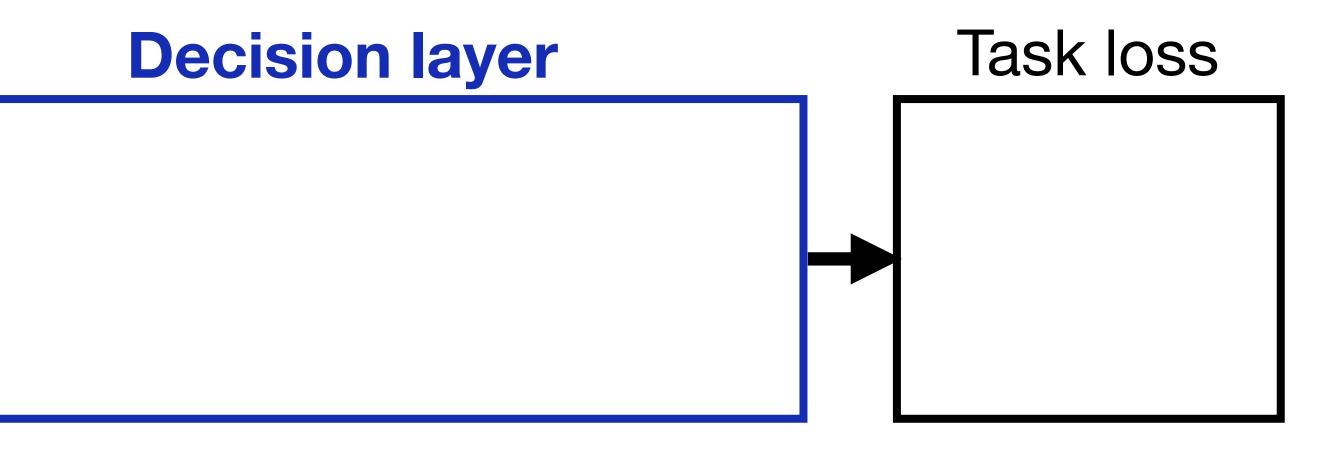
Prediction layer

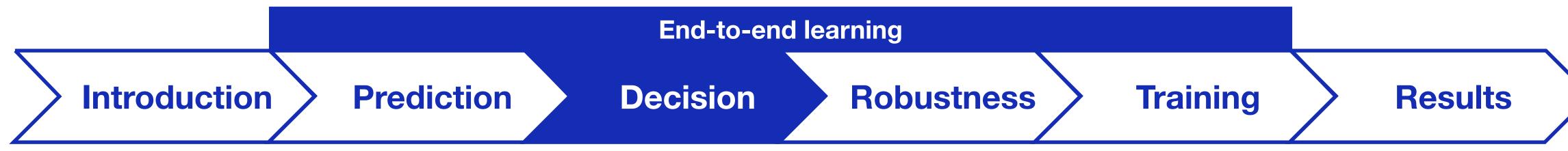
- $\blacktriangleright g_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$: Prediction model that maps features x_i to predictions \hat{y}_i • $\hat{y} = \{g_{\theta}(x_j)\}_{j=t-T}^t$: Predicted asset returns
- $\epsilon = \{y_j \hat{y}_j\}_{j=t-T}^{t-1}$: Prediction errors

Prediction





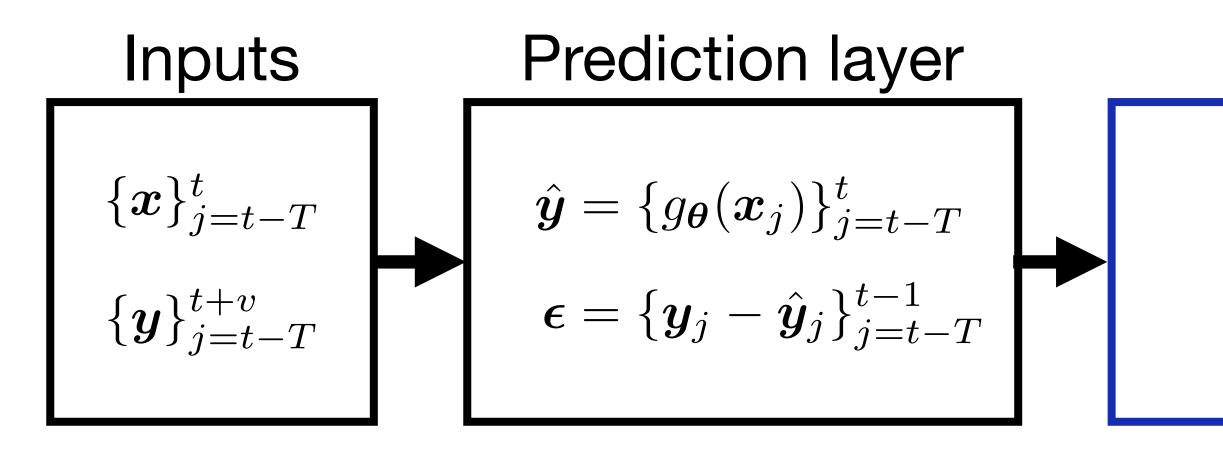


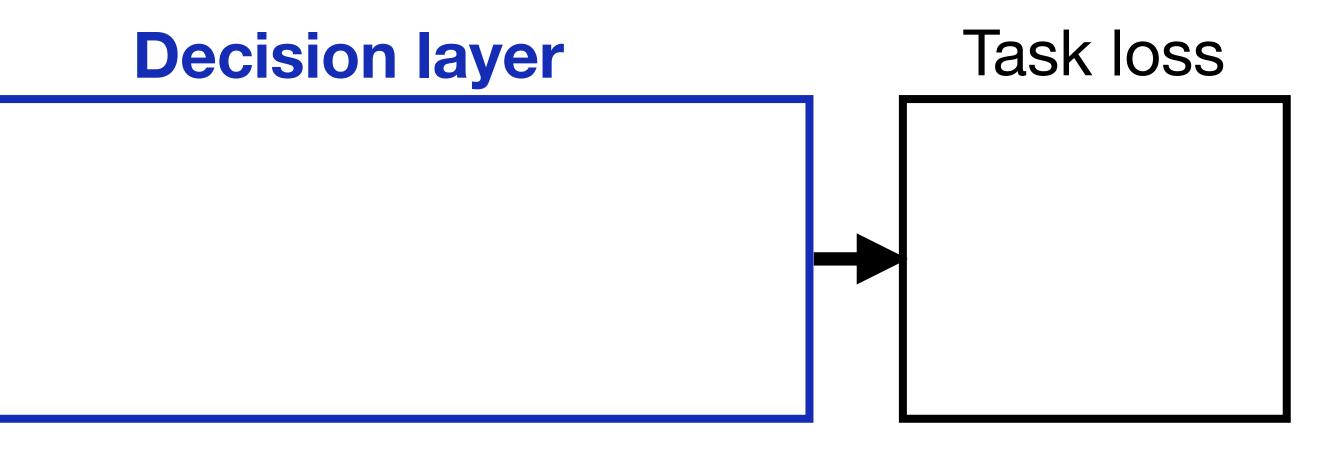


Optimization problem

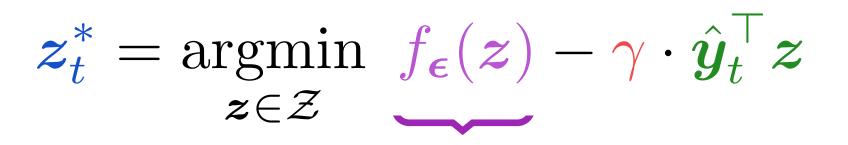
$$oldsymbol{z}_t^* = \operatorname*{argmin}_{oldsymbol{z} \in \mathcal{Z}} f_{oldsymbol{\epsilon}}(oldsymbol{z}) - oldsymbol{\gamma} \cdot \hat{oldsymbol{y}}_t^\top oldsymbol{z}$$

Optimal portfolio

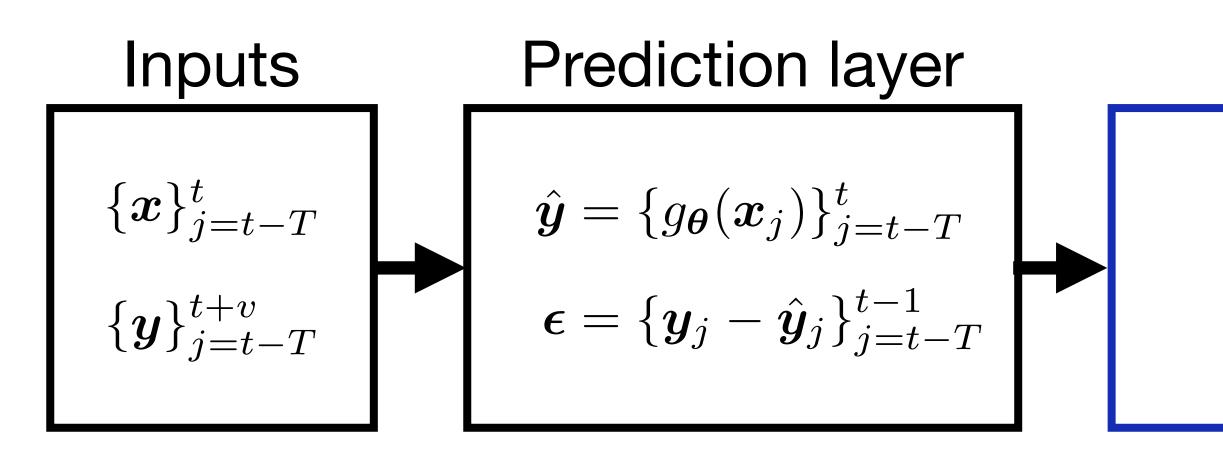


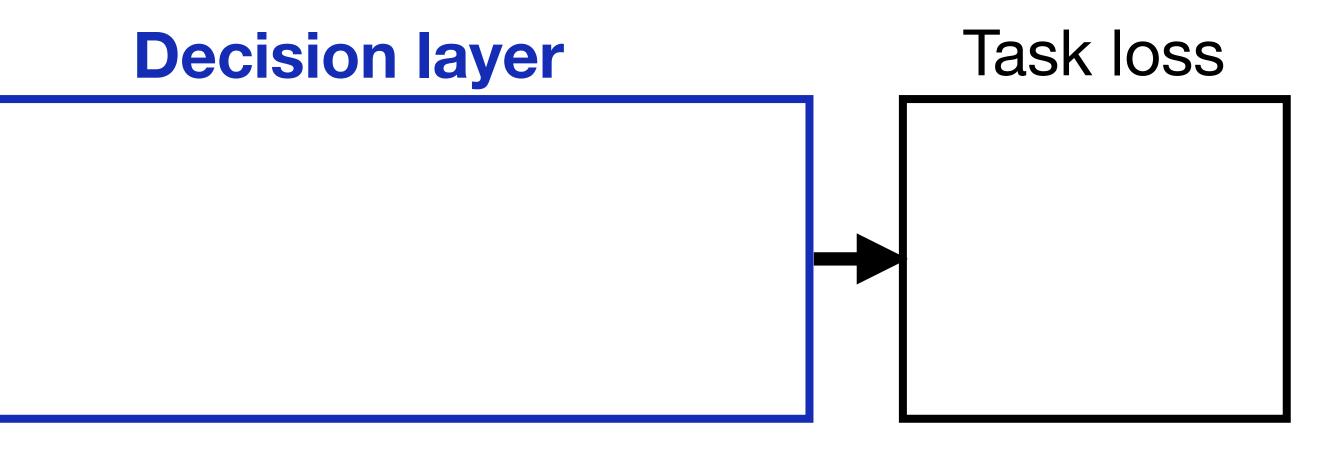


Optimization problem

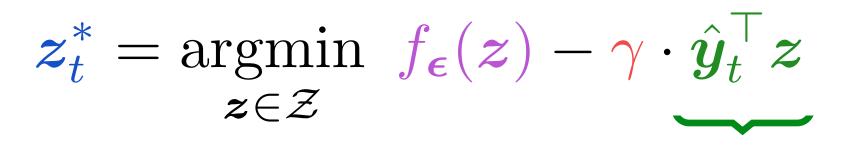


Deviation risk measure

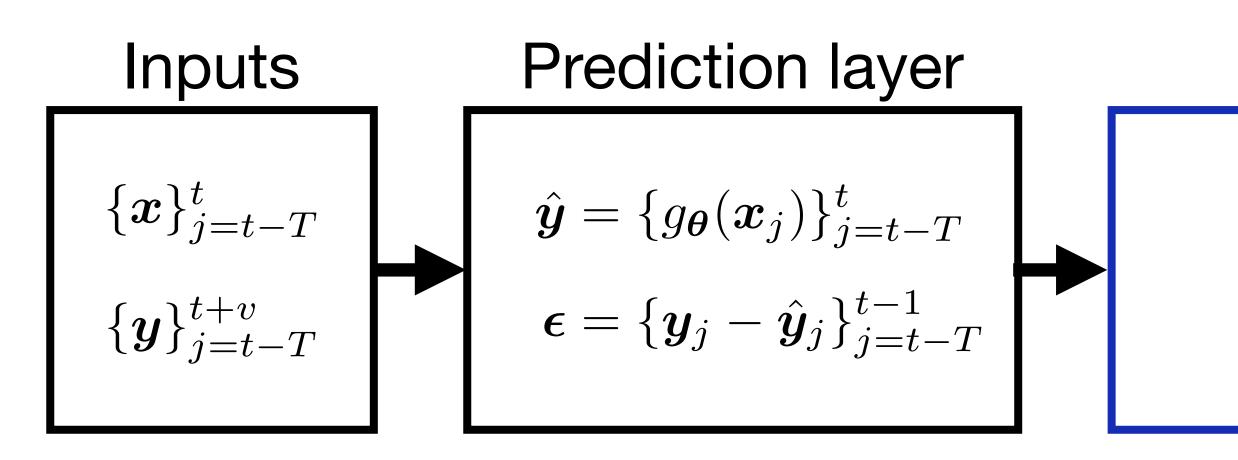


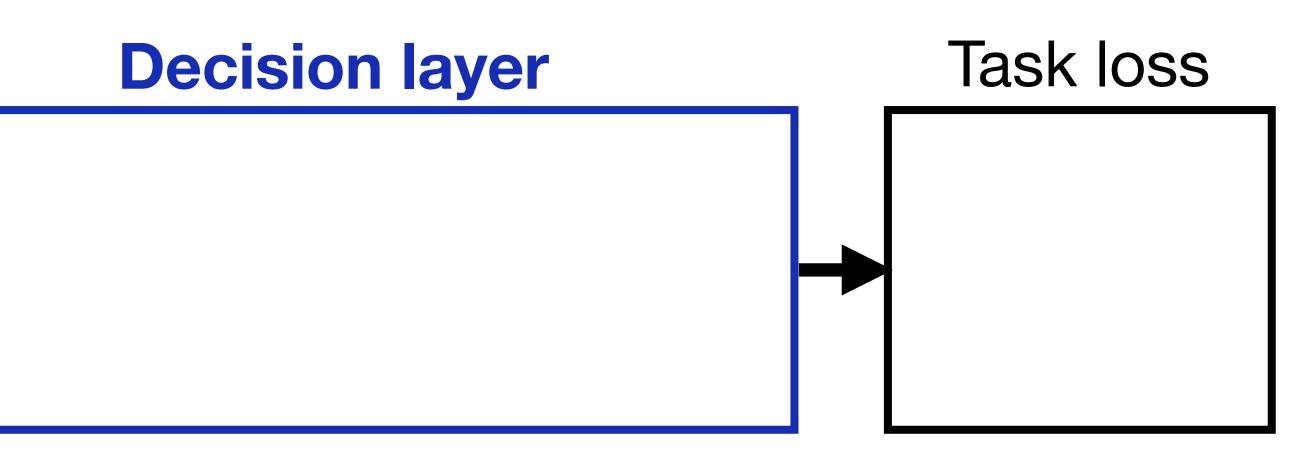


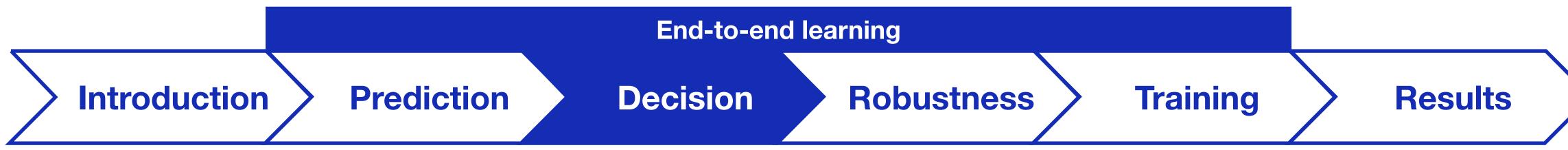
Optimization problem



Predicted portfolio return



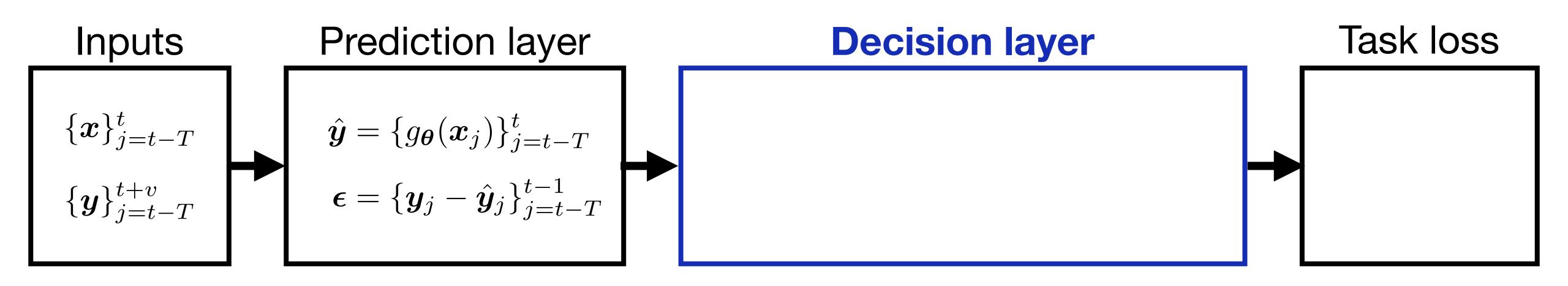




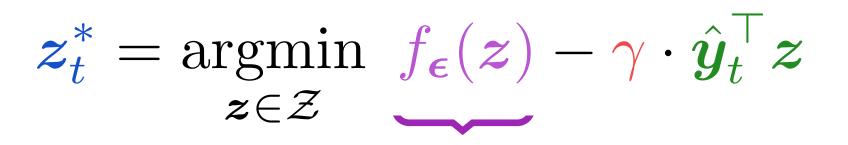
Optimization problem

$$oldsymbol{z}_t^* = rgmin_{oldsymbol{z}\in\mathcal{Z}} f_{oldsymbol{\epsilon}}(oldsymbol{z}) - oldsymbol{\gamma} \cdot \hat{oldsymbol{y}}_t^ op oldsymbol{z}_t$$

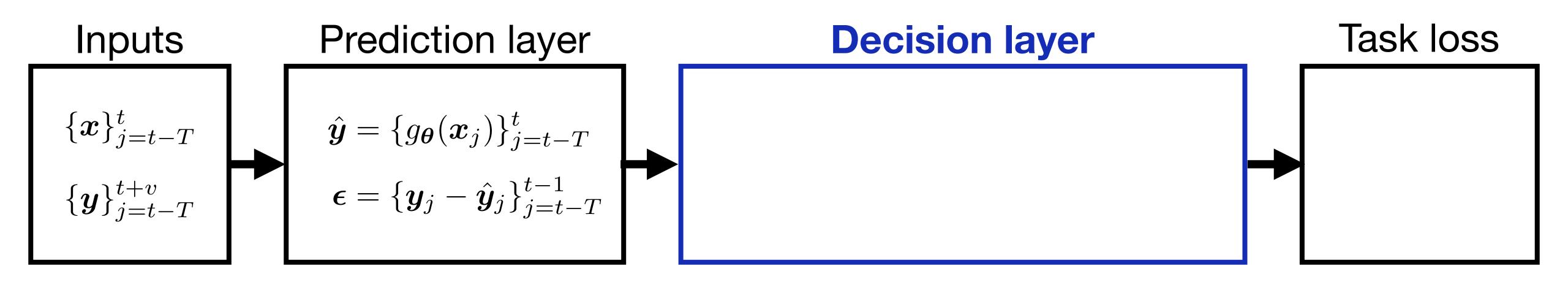
Risk aversion parameter



Optimization problem



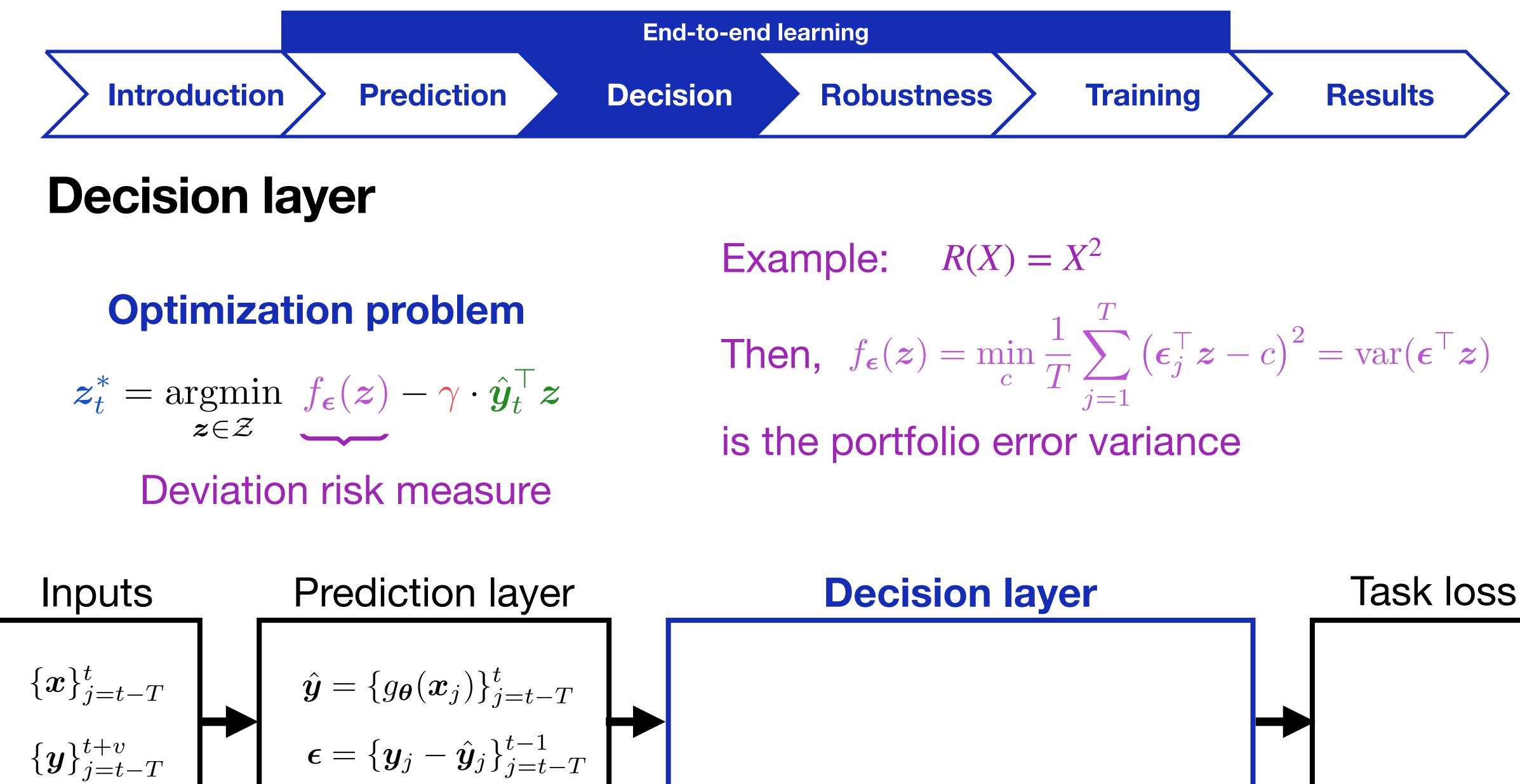
Deviation risk measure



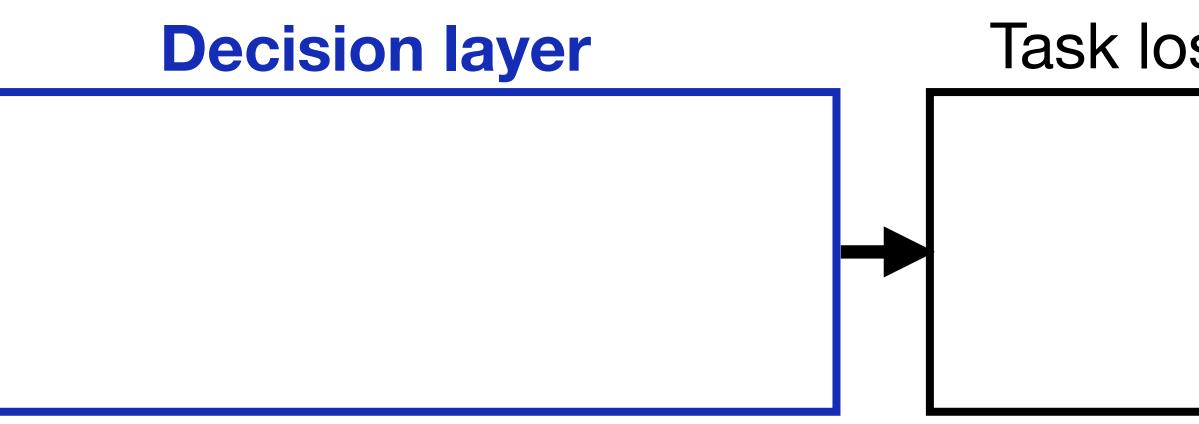
Let $R : \mathbb{R} \to \mathbb{R}_+ \cup +\infty$ is a closed convex function where R(0) = 0 and R(X) = R(-X)

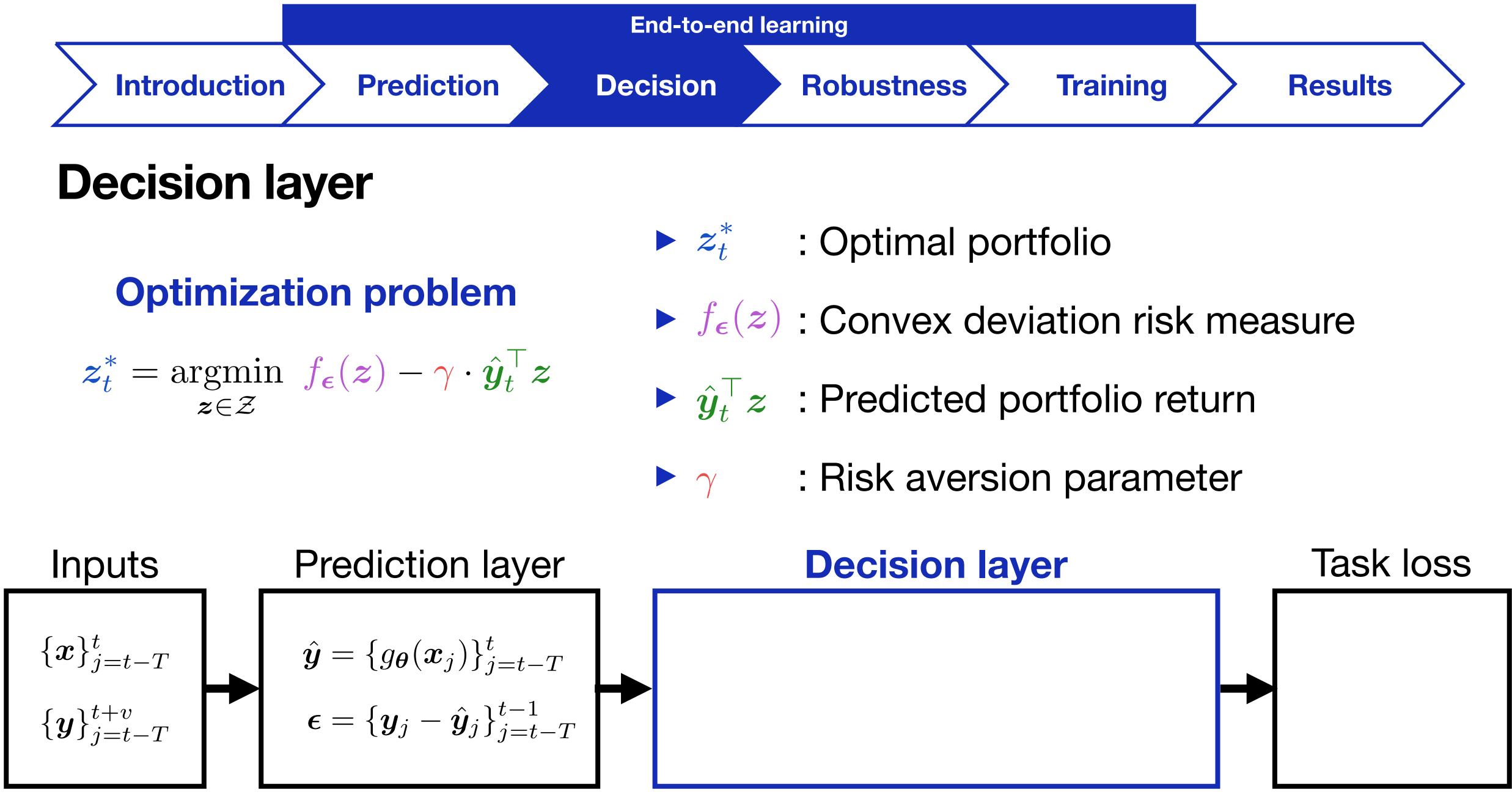
Then,
$$f_{\epsilon}(\boldsymbol{z}) = \min_{c} \frac{1}{T} \sum_{j=1}^{T} R(\epsilon_{j}^{\top} \boldsymbol{z} - c)$$

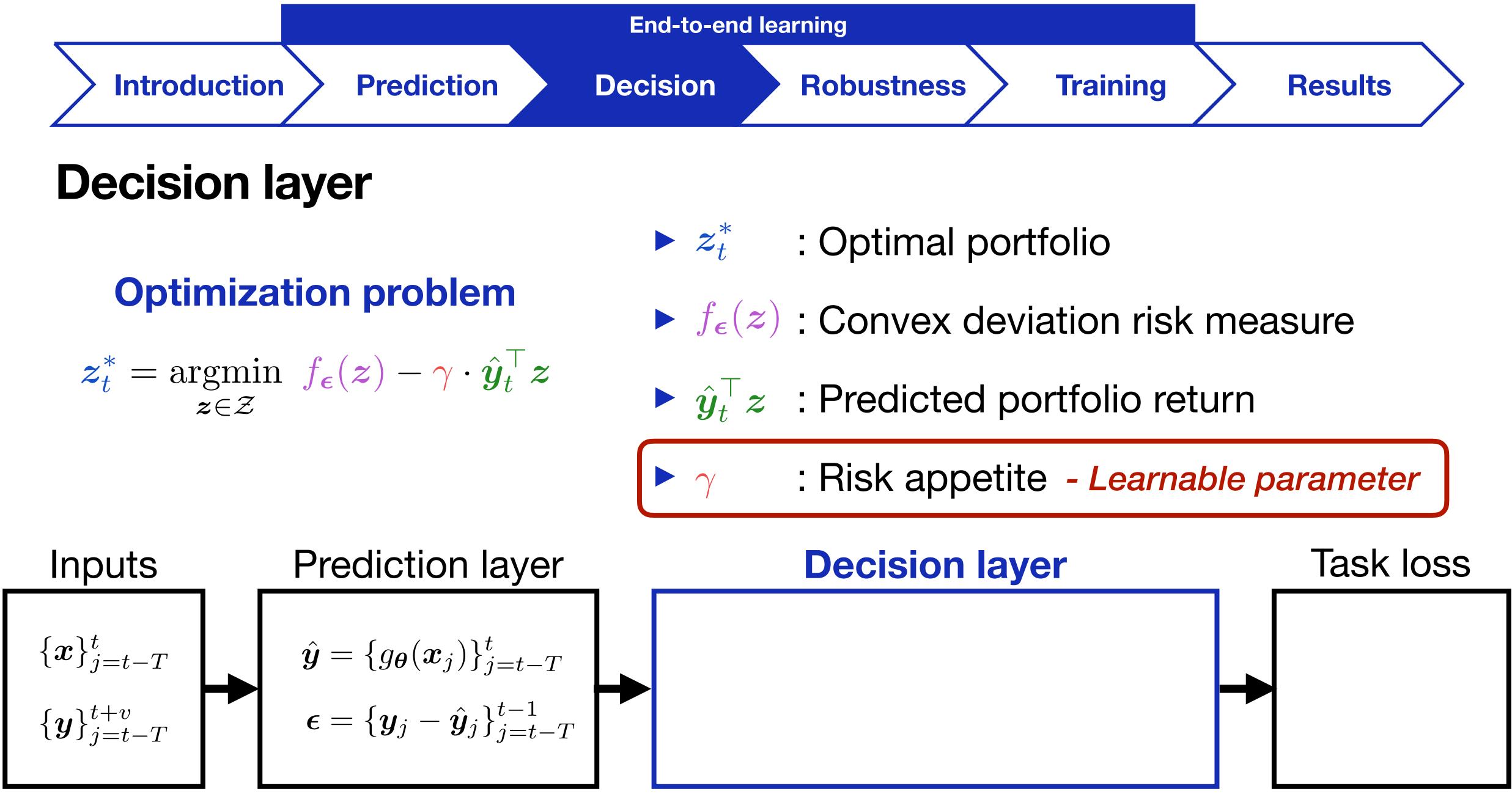
is a deviation risk measure

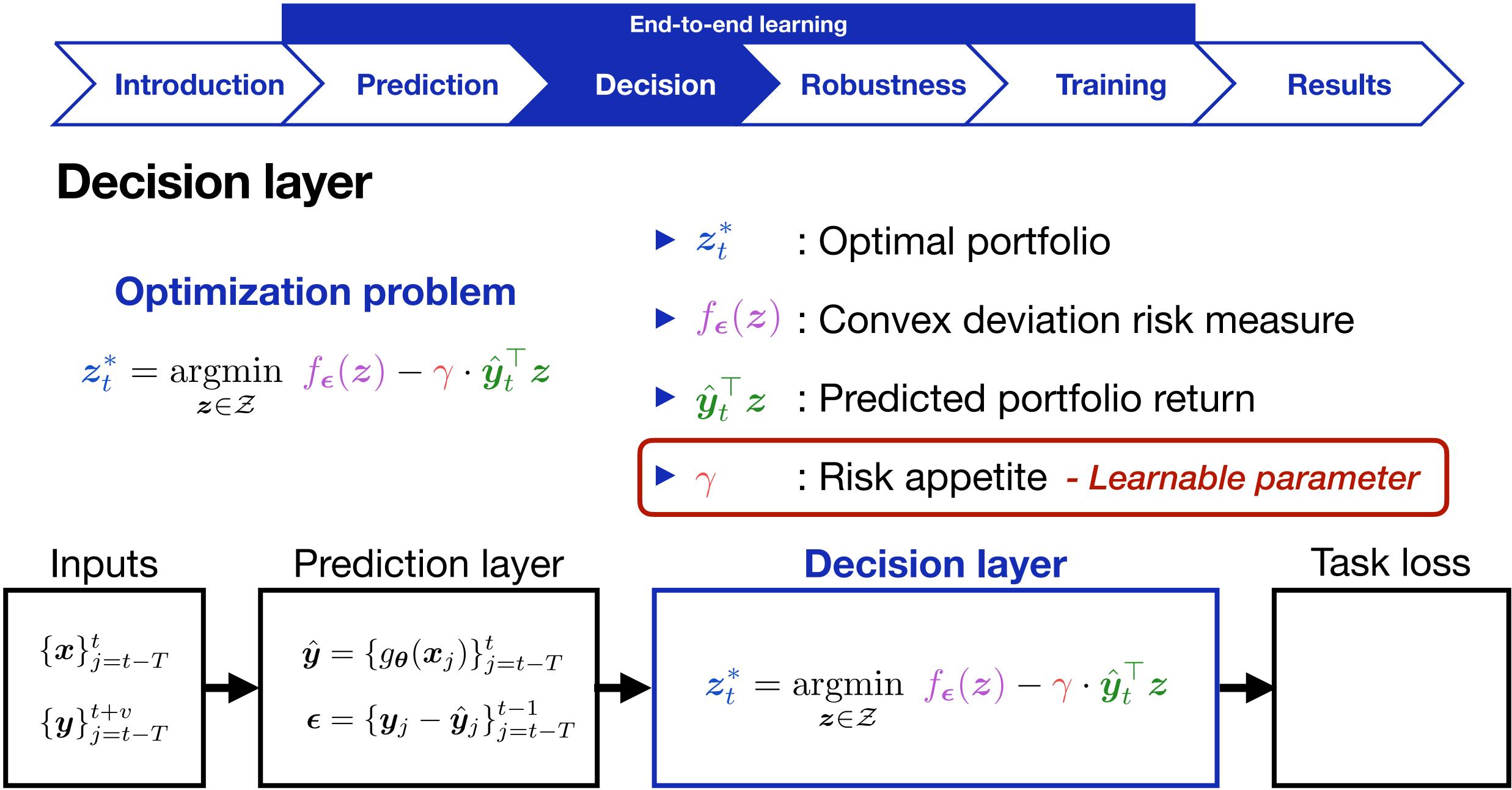


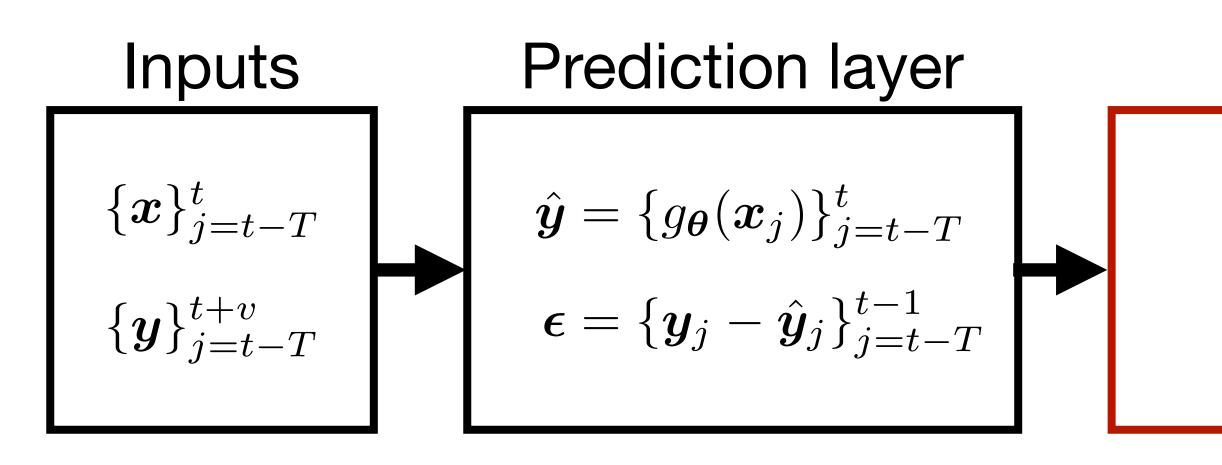
 $\{\mathbf{y}\}_{j=t-T}$

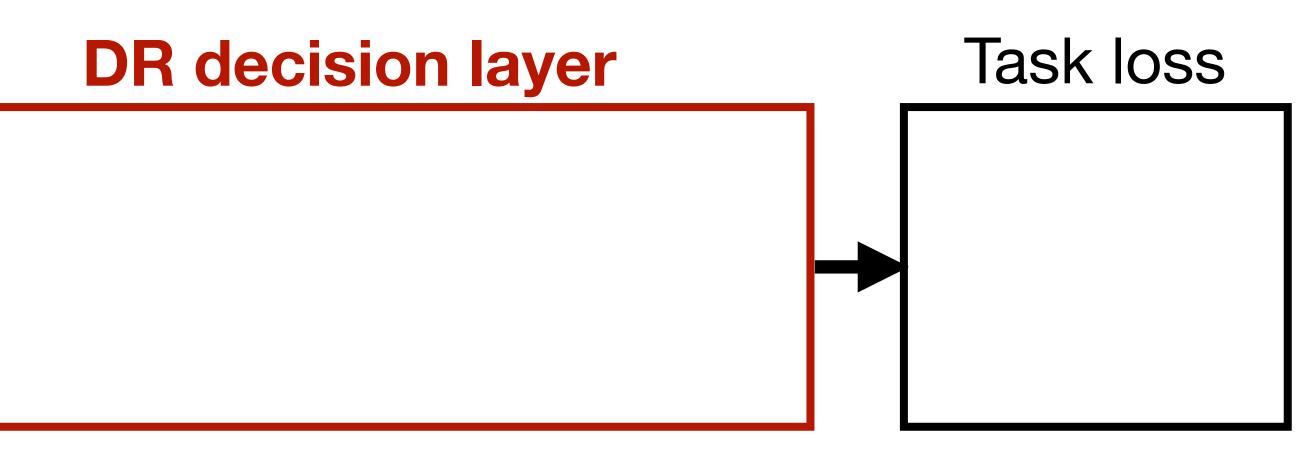






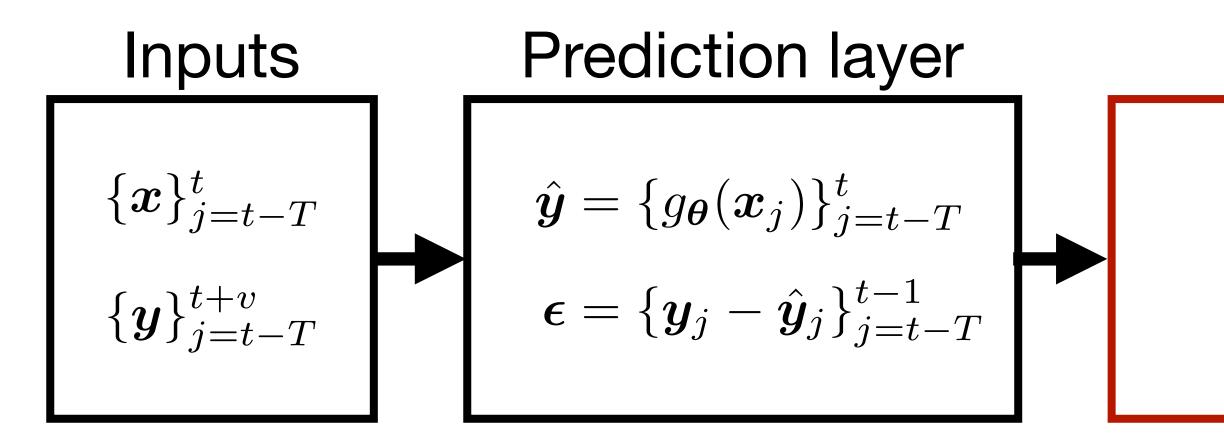


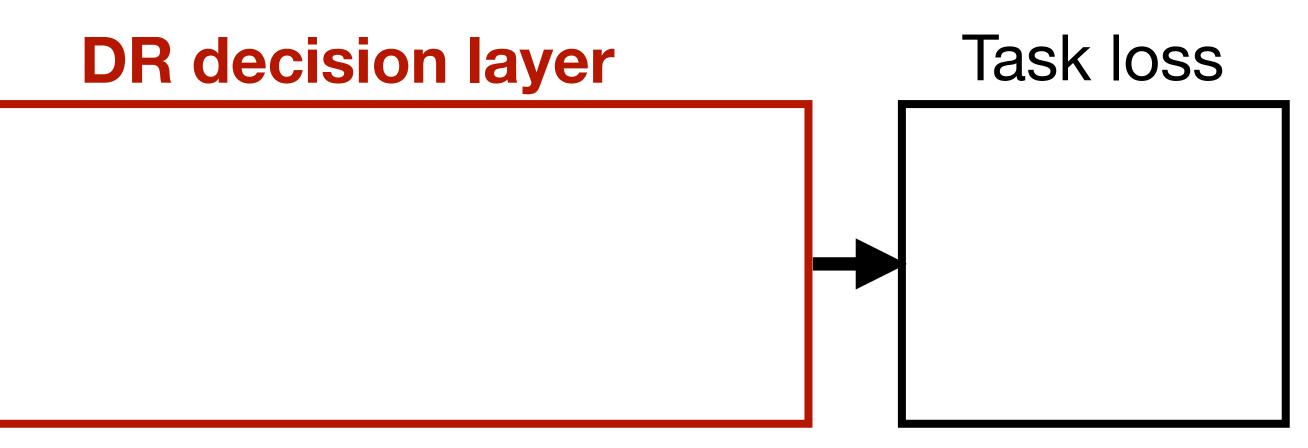




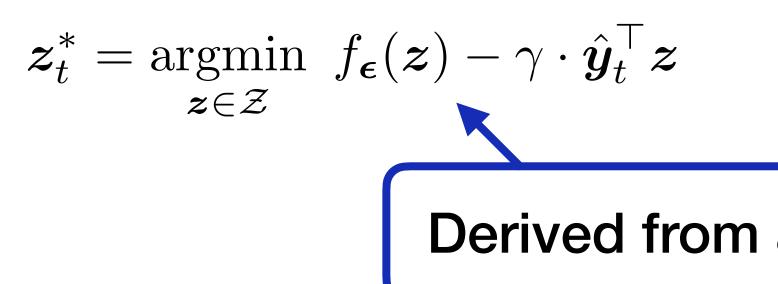
Nominal decision layer

 $oldsymbol{z}_t^* = \operatorname*{argmin}_{oldsymbol{z} \in \mathcal{Z}} f_{oldsymbol{\epsilon}}(oldsymbol{z}) - \gamma \cdot \hat{oldsymbol{y}}_t^{ op} oldsymbol{z}$

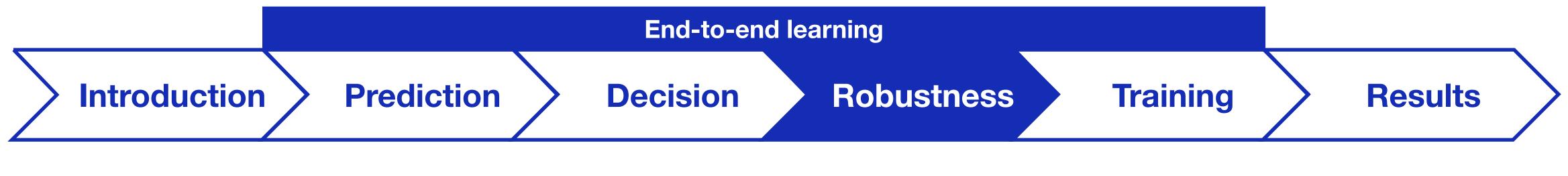




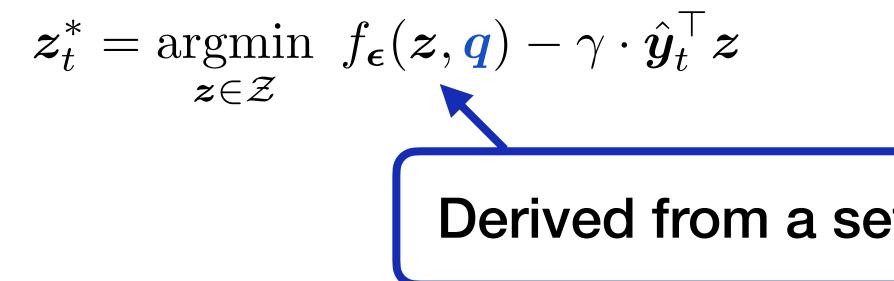
Nominal decision layer



Derived from a set of past prediction errors



Nominal decision layer



Deviation risk measure $f_{\boldsymbol{\epsilon}}(\boldsymbol{z},\boldsymbol{q}) = \min_{c} \sum_{j=1}^{c} \boldsymbol{q}_{j} \cdot R(\boldsymbol{\epsilon}_{j}^{\top}\boldsymbol{z} - c)$

Derived from a set of past prediction errors

Nominal assumption: All scenarios are equally likely, $q_i = 1/T$ for j = 1, ..., T

Nominal decision layer

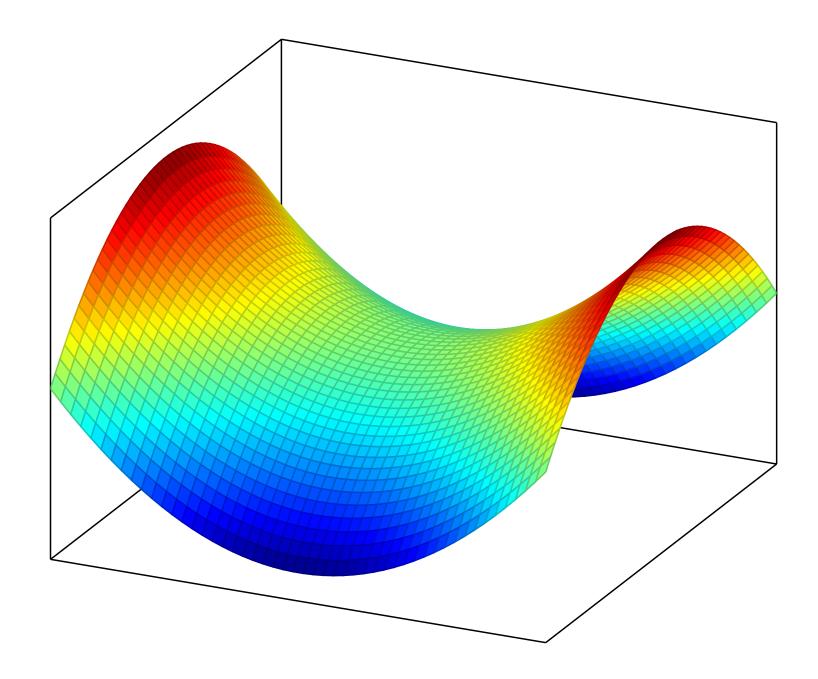
 $\boldsymbol{z}_t^* = \operatorname*{argmin}_{\boldsymbol{z} \in \mathcal{Z}} f_{\boldsymbol{\epsilon}}(\boldsymbol{z}, \boldsymbol{q}) - \gamma \cdot \hat{\boldsymbol{y}}_t^\top \boldsymbol{z}$

- Can we protect against scenario probabilities changing in the future?

Nominal assumption: All scenarios are equally likely, $q_i = 1/T$ for j = 1, ..., T

Nominal decision layer

DR decision layer



Nominal decision layer

$$\mathcal{P}(\delta) riangleq \{ oldsymbol{p} \in \mathbb{R}^T : oldsymbol{p} \geq 0 \}$$

Ambiguity set

 $\triangleright p$: probability mass function

DR decision layer

 $\geq 0, \ \mathbf{1}^{+} \mathbf{p} = 1, \ I_{\phi}(\mathbf{p}, \mathbf{q}) \leq \delta \}$

Nominal decision layer

$$\mathcal{P}(\delta) riangleq \left\{ oldsymbol{p} \in \mathbb{R}^T : oldsymbol{p} \geq \mathbf{Proba}
ight\}$$

 $\triangleright p$: probability mass function

DR decision layer

$\geq \mathbf{0}, \ \mathbf{1}^{\top} \boldsymbol{p} = 1, \ I_{\phi}(\boldsymbol{p}, \boldsymbol{q}) \leq \delta \}$ ability simplex

Nominal decision layer

$$\mathcal{P}(\delta) riangleq \left\{ oldsymbol{p} \in \mathbb{R}^T : oldsymbol{p} \geq
ight\}$$

 $\triangleright p$: probability mass function

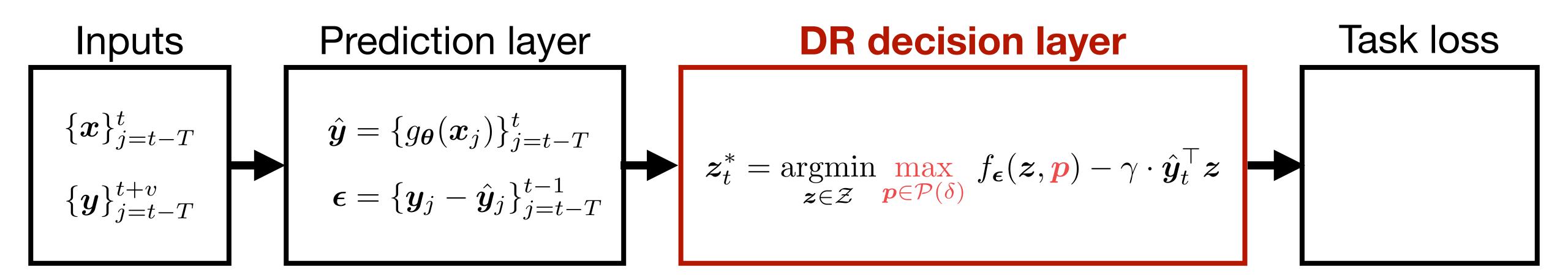
> Distance measure: ϕ -divergence (e.g., Kullback-Leibler, Hellinger)

DR decision layer

$\geq \mathbf{0}, \ \mathbf{1}^{\top} \boldsymbol{p} = 1, \ I_{\phi}(\boldsymbol{p}, \boldsymbol{q}) \leq \delta \}$

 δ -constrained distance measure

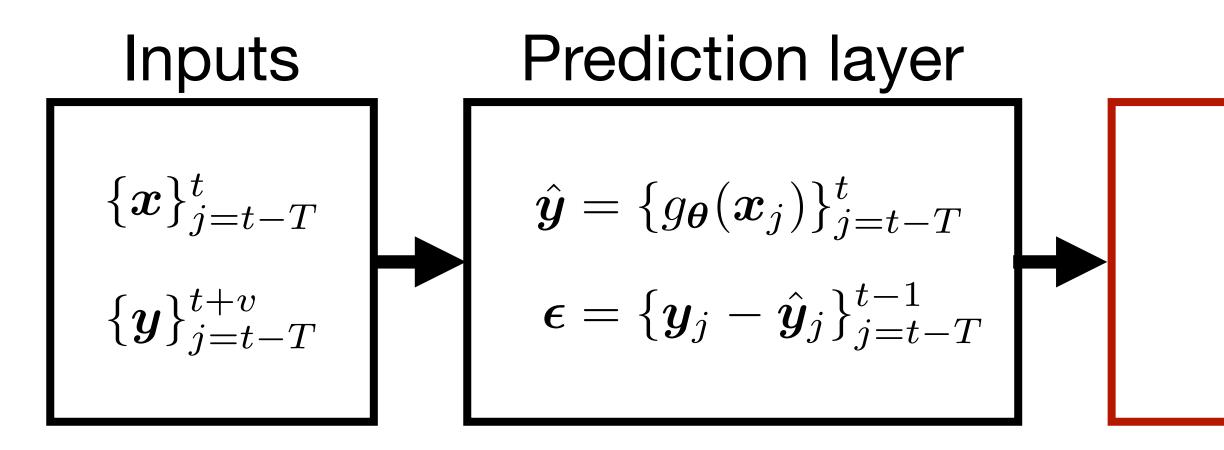
Nominal decision layer

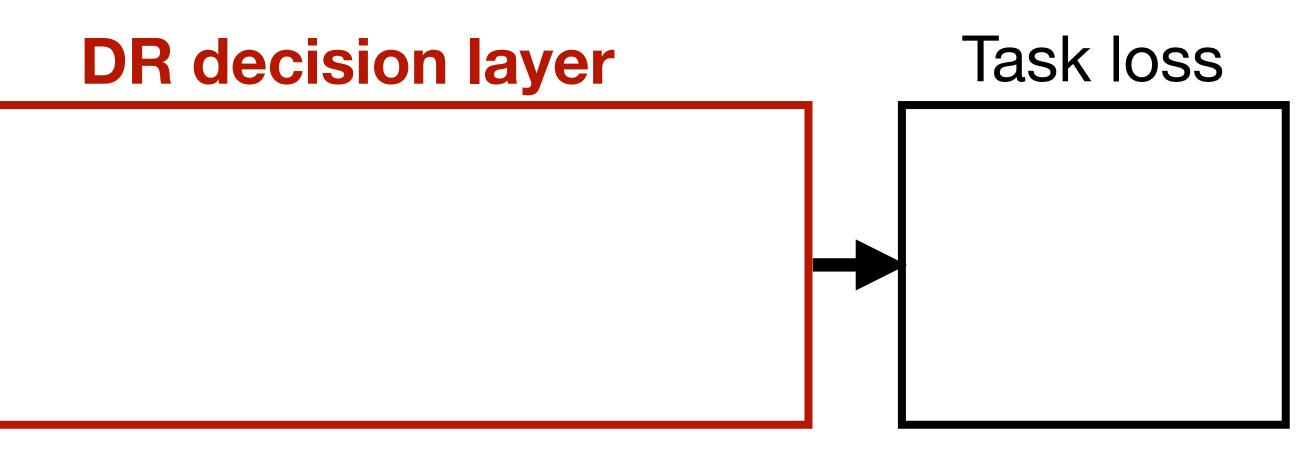


DR decision layer

Minimax problem

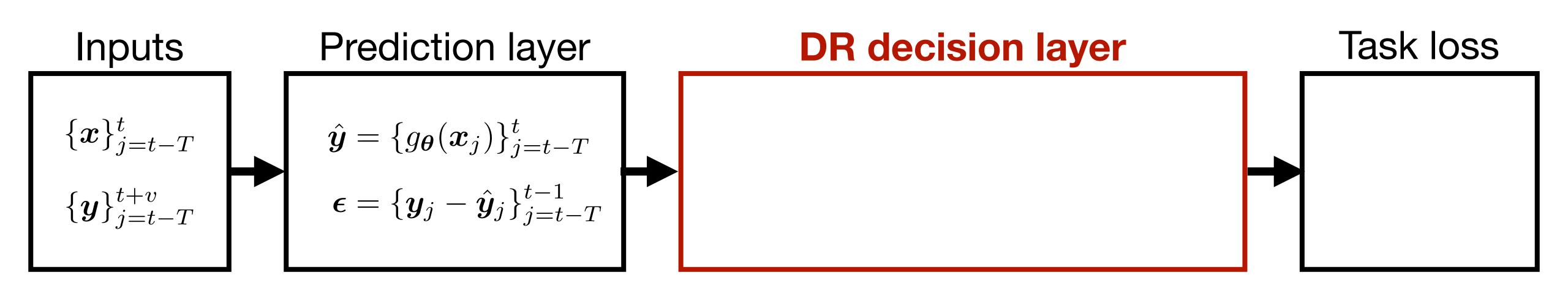
 $oldsymbol{z}_t^* = rgmin_{oldsymbol{z}\in\mathcal{Z}} \max_{oldsymbol{p}\in\mathcal{P}(\delta)} f_{oldsymbol{\epsilon}}(oldsymbol{z},oldsymbol{p}) - \gamma \cdot \hat{oldsymbol{y}}_t^{ op} oldsymbol{z}$

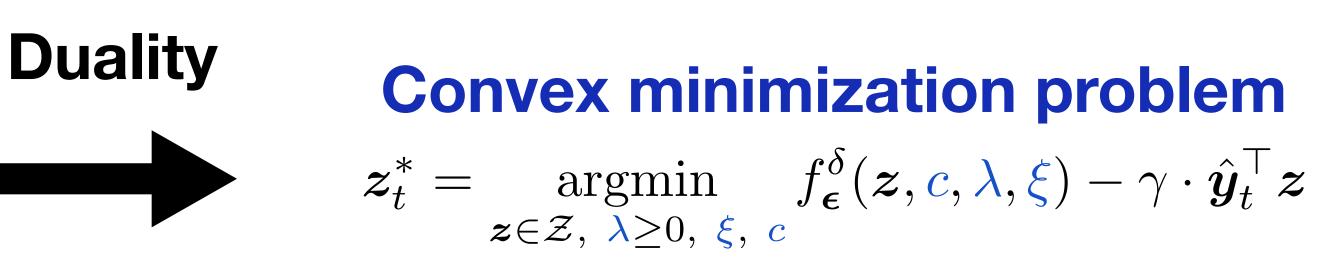




Minimax problem

 $oldsymbol{z}_t^* = rgmin_{oldsymbol{z}\in\mathcal{Z}} \max_{oldsymbol{p}\in\mathcal{P}(\delta)} f_{oldsymbol{\epsilon}}(oldsymbol{z},oldsymbol{p}) - \gamma \cdot \hat{oldsymbol{y}}_t^{ op} oldsymbol{z}$





Duality

Distributionally robust decision layer

Minimax problem

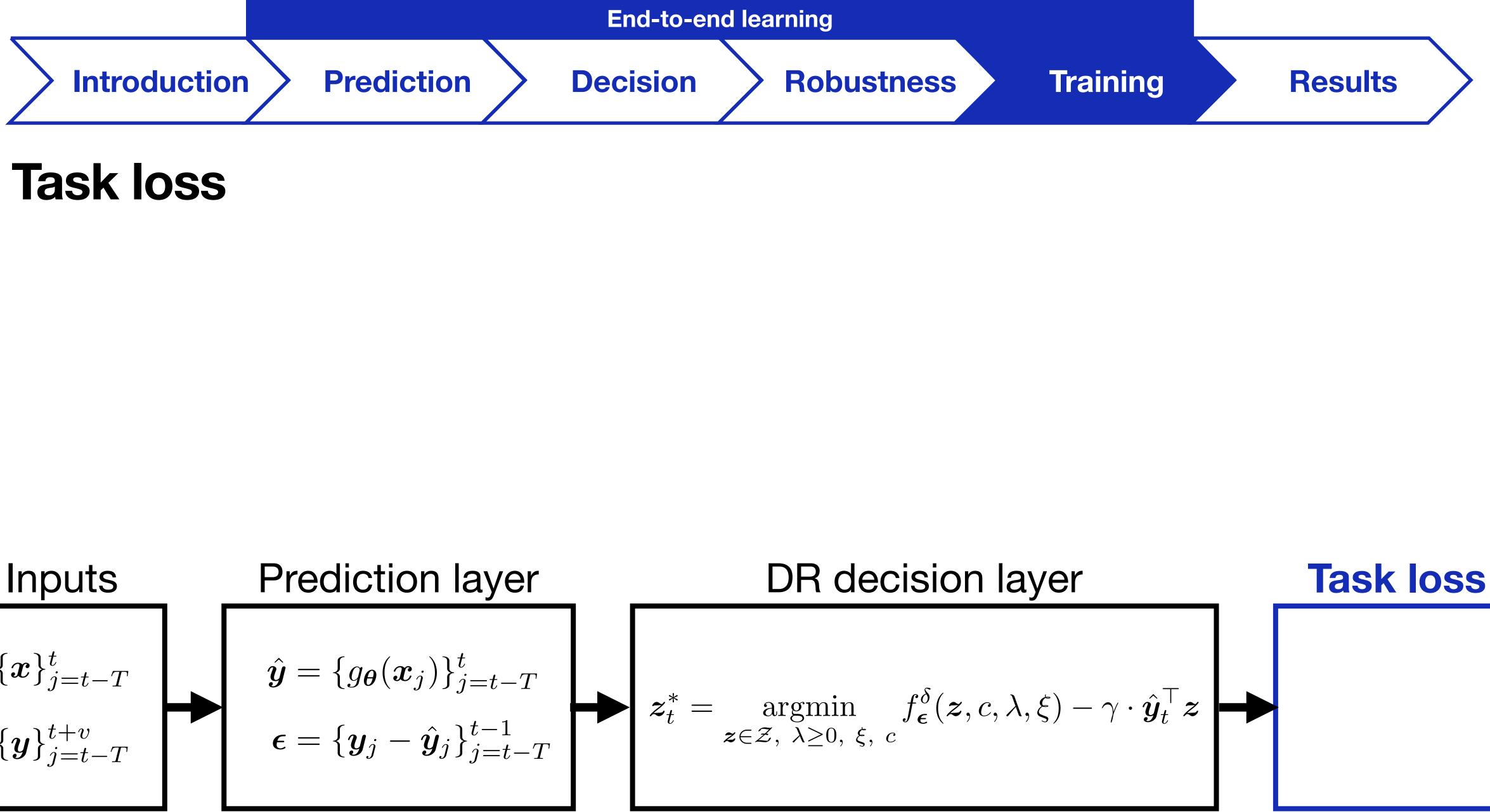
 $oldsymbol{z}_t^* = rgmin_{oldsymbol{z}\in\mathcal{Z}} \max_{oldsymbol{p}\in\mathcal{P}(\delta)} f_{oldsymbol{\epsilon}}(oldsymbol{z},oldsymbol{p}) - \gamma \cdot \hat{oldsymbol{y}}_t^{ op} oldsymbol{z}$

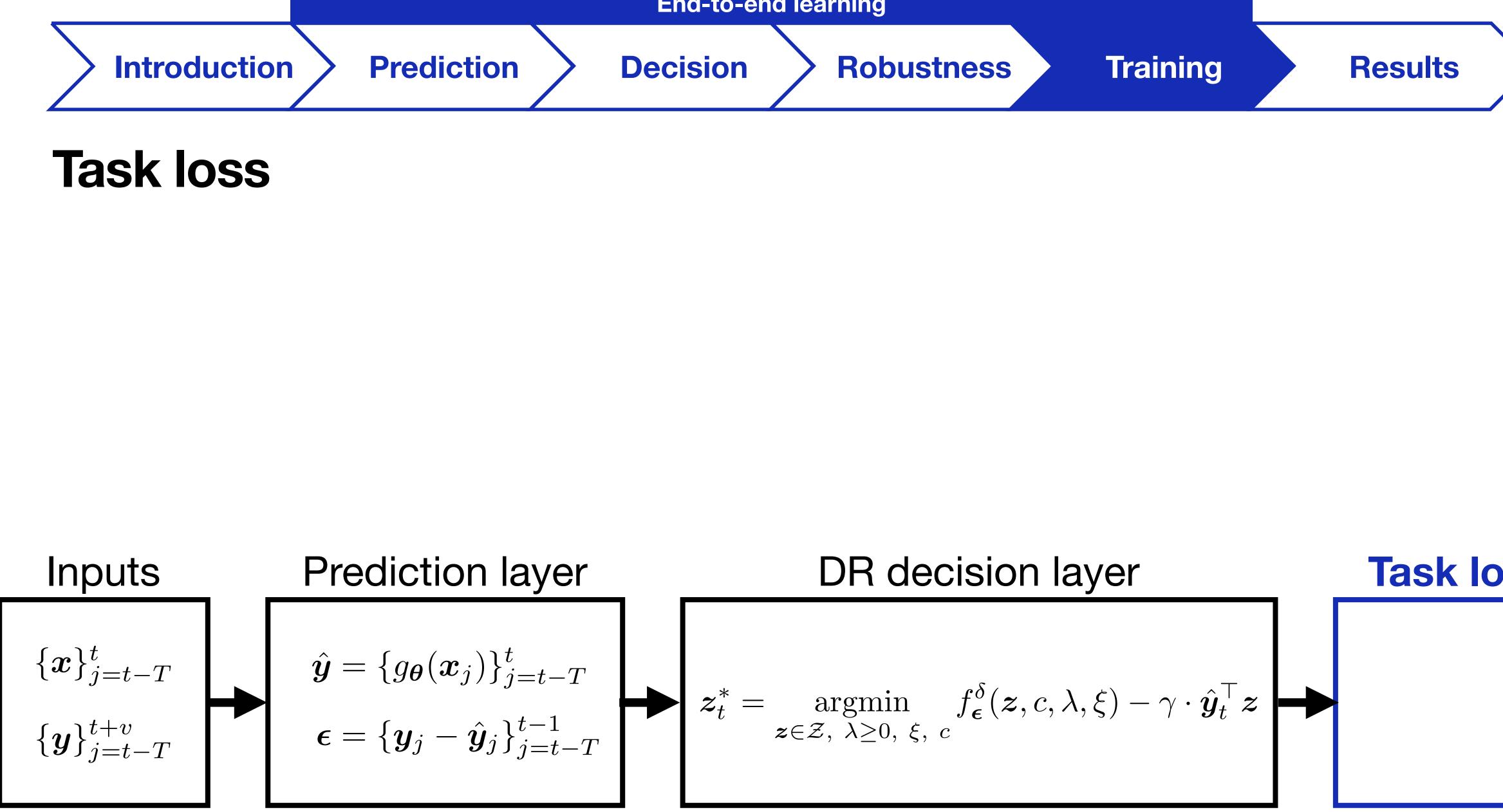


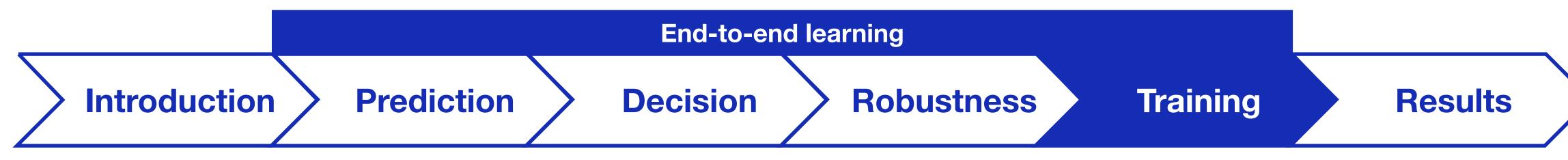
Convex minimization problem

 $oldsymbol{z}_t^* = rgmin_{oldsymbol{z}\in\mathcal{Z},\ oldsymbol{\lambda}\geq 0,\ oldsymbol{\xi},\ oldsymbol{c}} f_{oldsymbol{\epsilon}}^{\delta}(oldsymbol{z},oldsymbol{c},oldsymbol{\lambda},oldsymbol{\xi}) - \gamma \cdot \hat{oldsymbol{y}}_t^{ op} oldsymbol{z}$

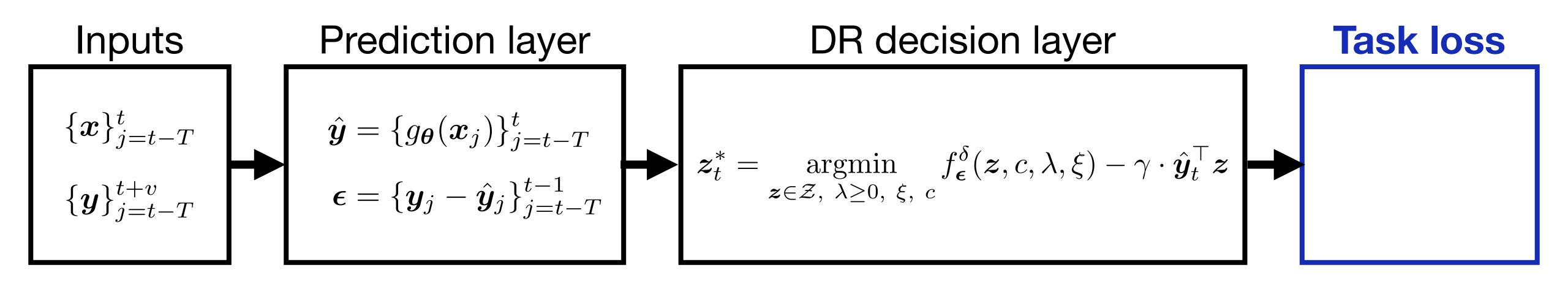
 δ is now learnable

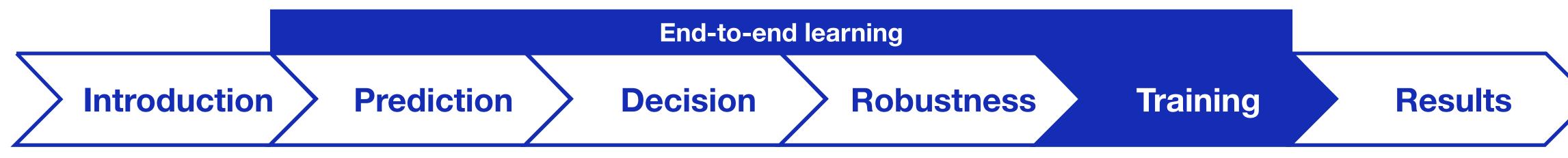




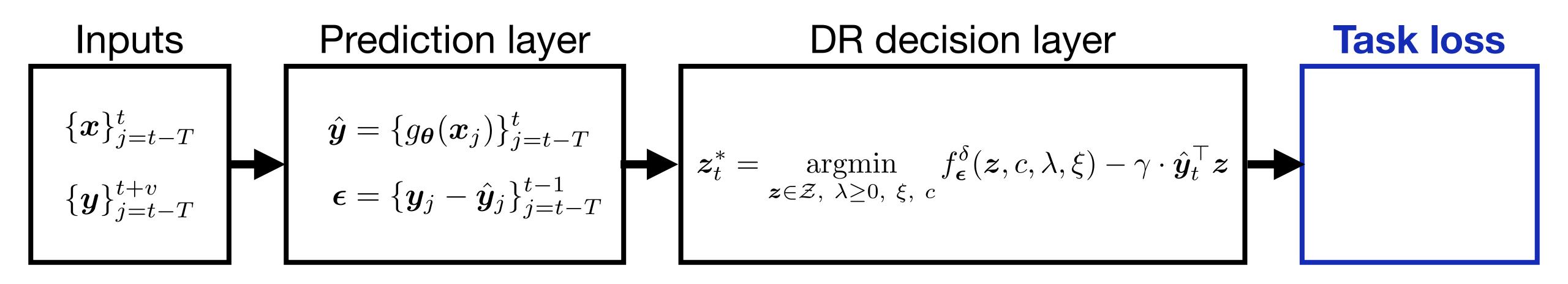


Standard supervised learning: loss function = prediction error.

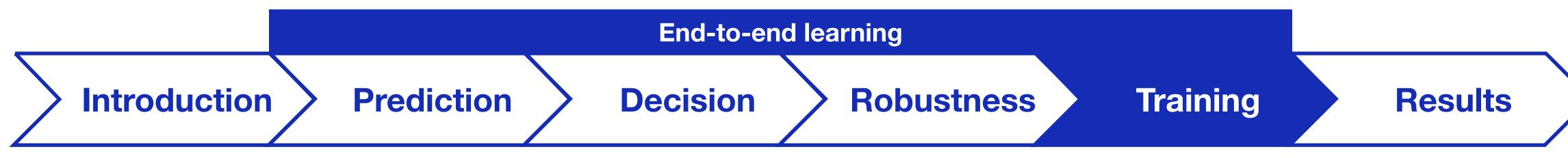




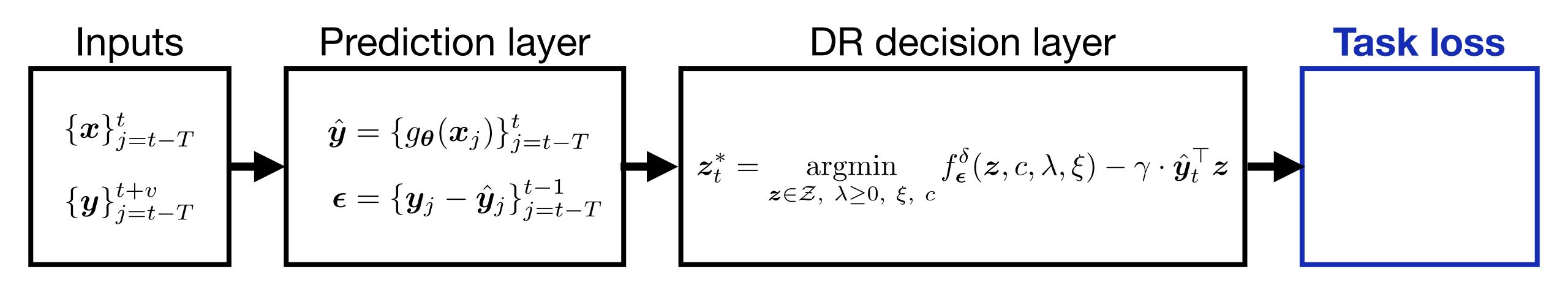
- Standard supervised learning: loss function = prediction error.

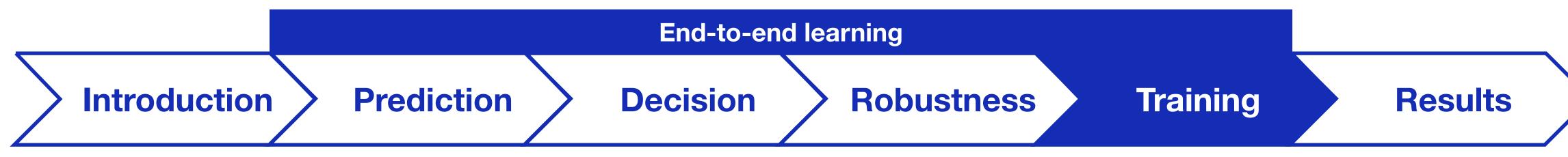


End-to-end system: Task loss = out-of-sample performance of the decision.

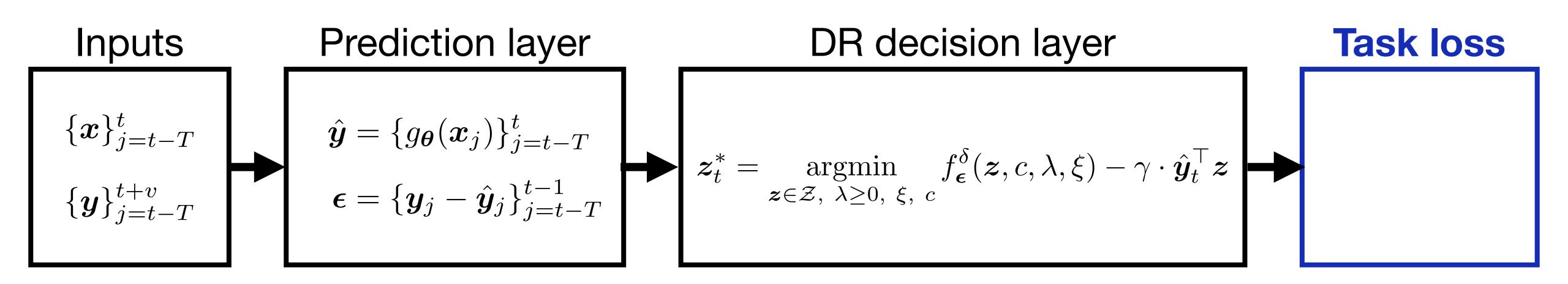


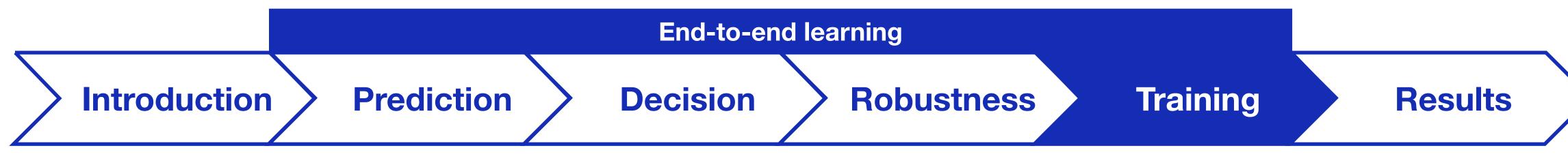
- Standard supervised learning: loss function = prediction error.
- End-to-end system: Task loss = out-of-sample performance of the decision.
- Task loss function \neq objective function of the decision layer.





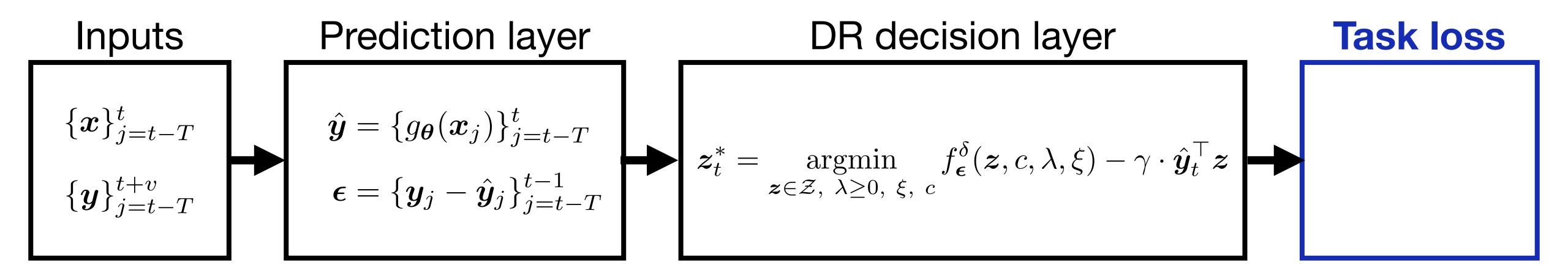
Define the task loss as the financial performance over the next v time steps.





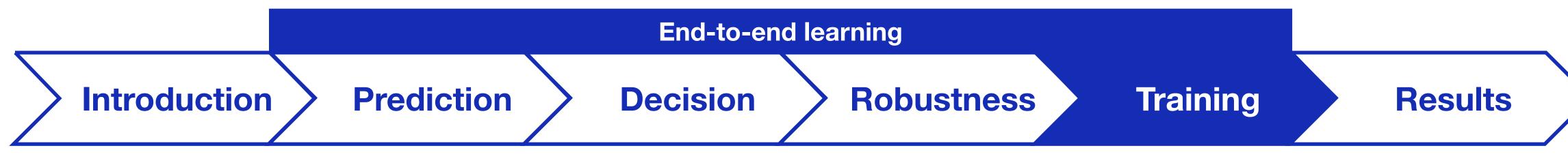
For example, the task loss may be defined as the Sharpe ratio:

$$lig(oldsymbol{z}_t^*, ig(oldsymbol{y}_jig)_{j=t}^{t+v}ig)$$
 =



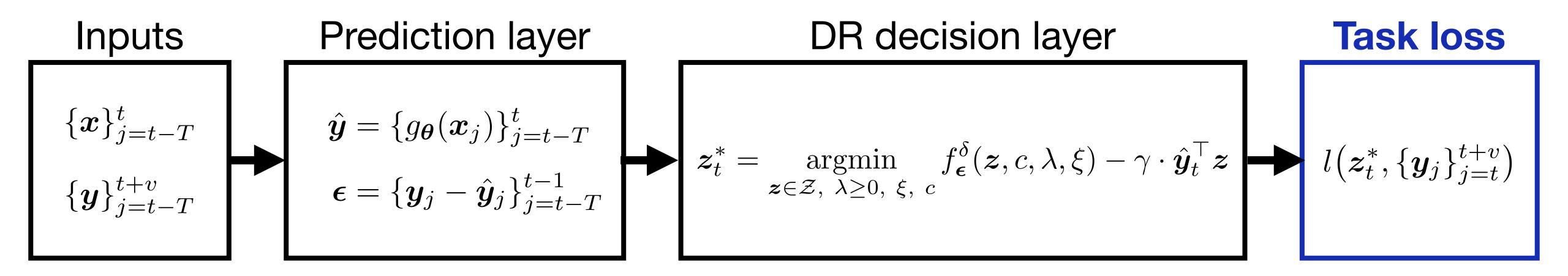
 \triangleright Define the task loss as the financial performance over the next v time steps.

 $= -\frac{\operatorname{mean}(\{\boldsymbol{y}_j^{\top} \boldsymbol{z}_t^*\}_{j=t}^{t+v})}{\operatorname{std}(\{\boldsymbol{y}_j^{\top} \boldsymbol{z}_t^*\}_{j=t}^{t+v})}$



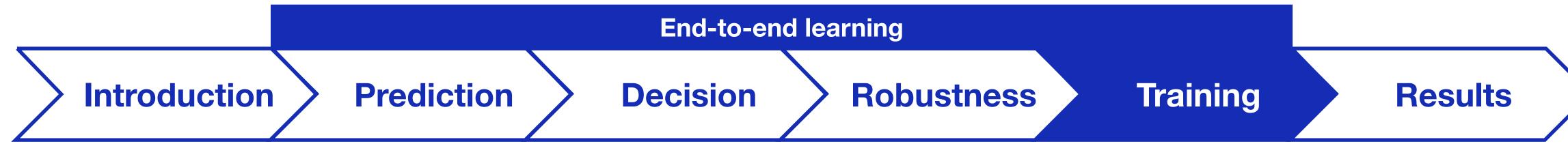
For example, the task loss may be defined as the Sharpe ratio:

$$lig(oldsymbol{z}_t^*, ig(oldsymbol{y}_jig)_{j=t}^{t+v}ig)$$
 =

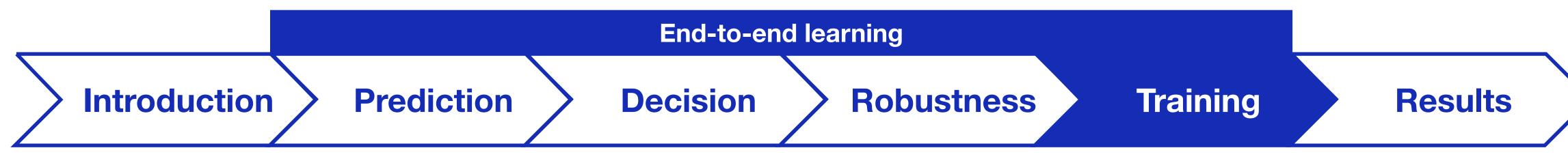


 \triangleright Define the task loss as the financial performance over the next v time steps.

 $= -\frac{\operatorname{mean}(\{\boldsymbol{y}_j^{\top} \boldsymbol{z}_t^*\}_{j=t}^{t+v})}{\operatorname{std}(\{\boldsymbol{y}_j^{\top} \boldsymbol{z}_t^*\}_{j=t}^{t+v})}$

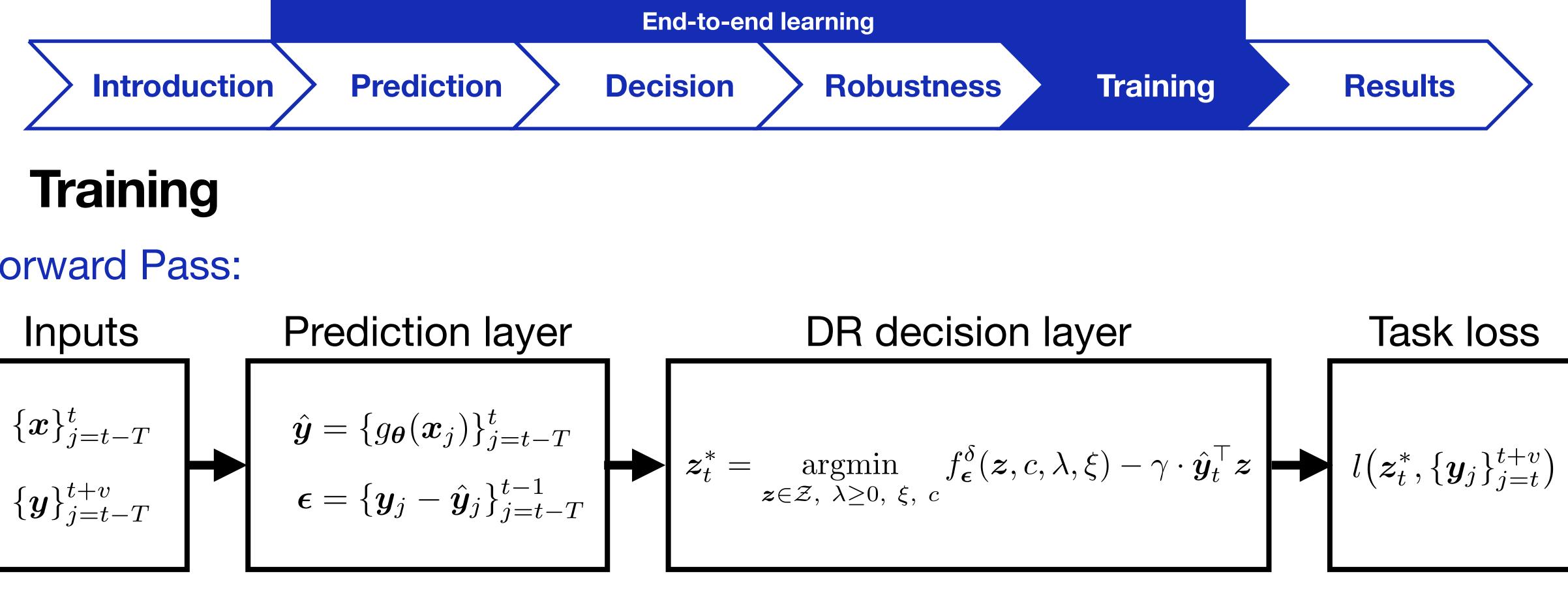


Training



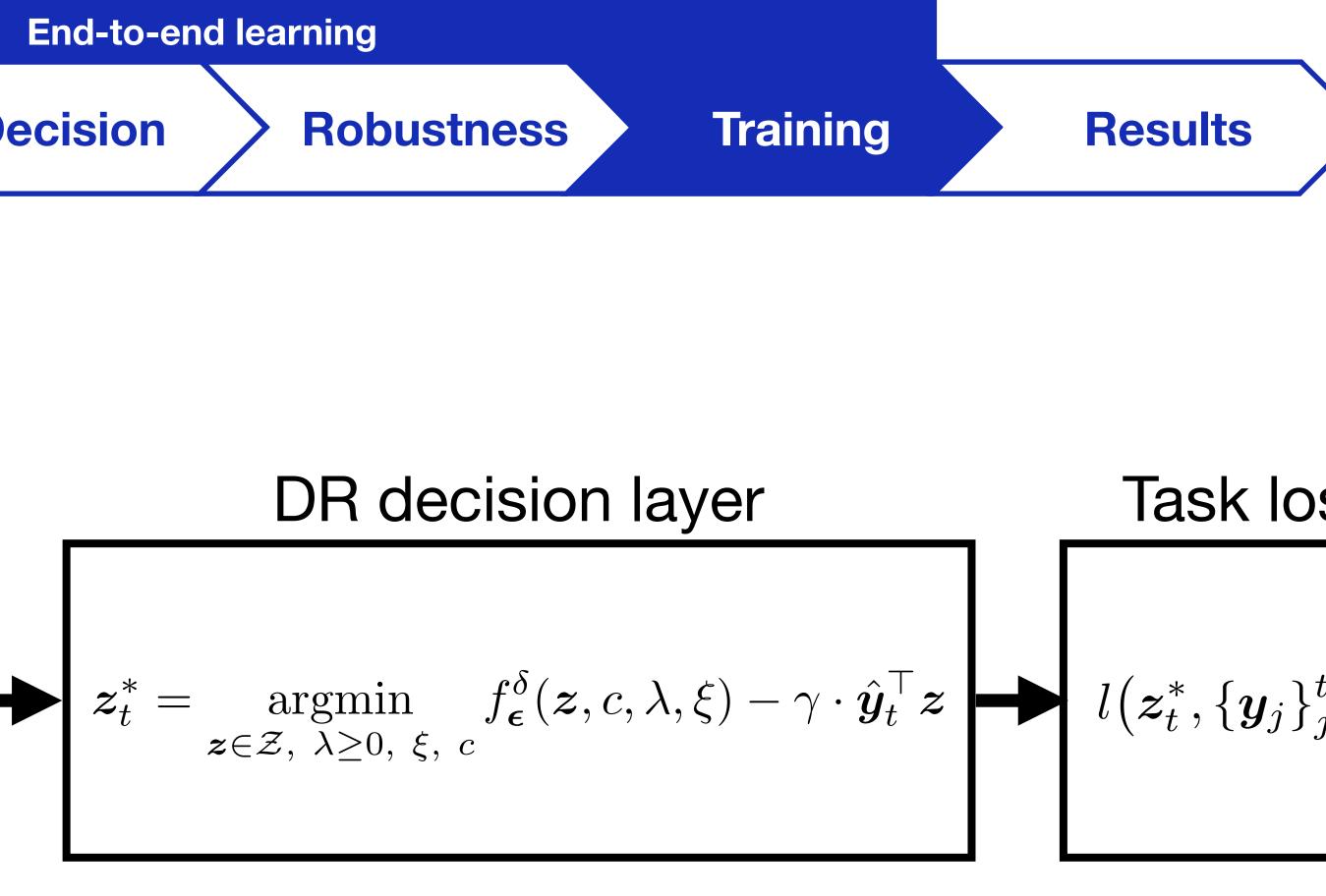
Training

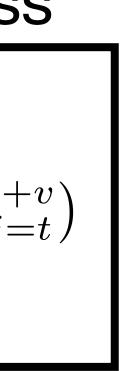
The model is trained through gradient descent.

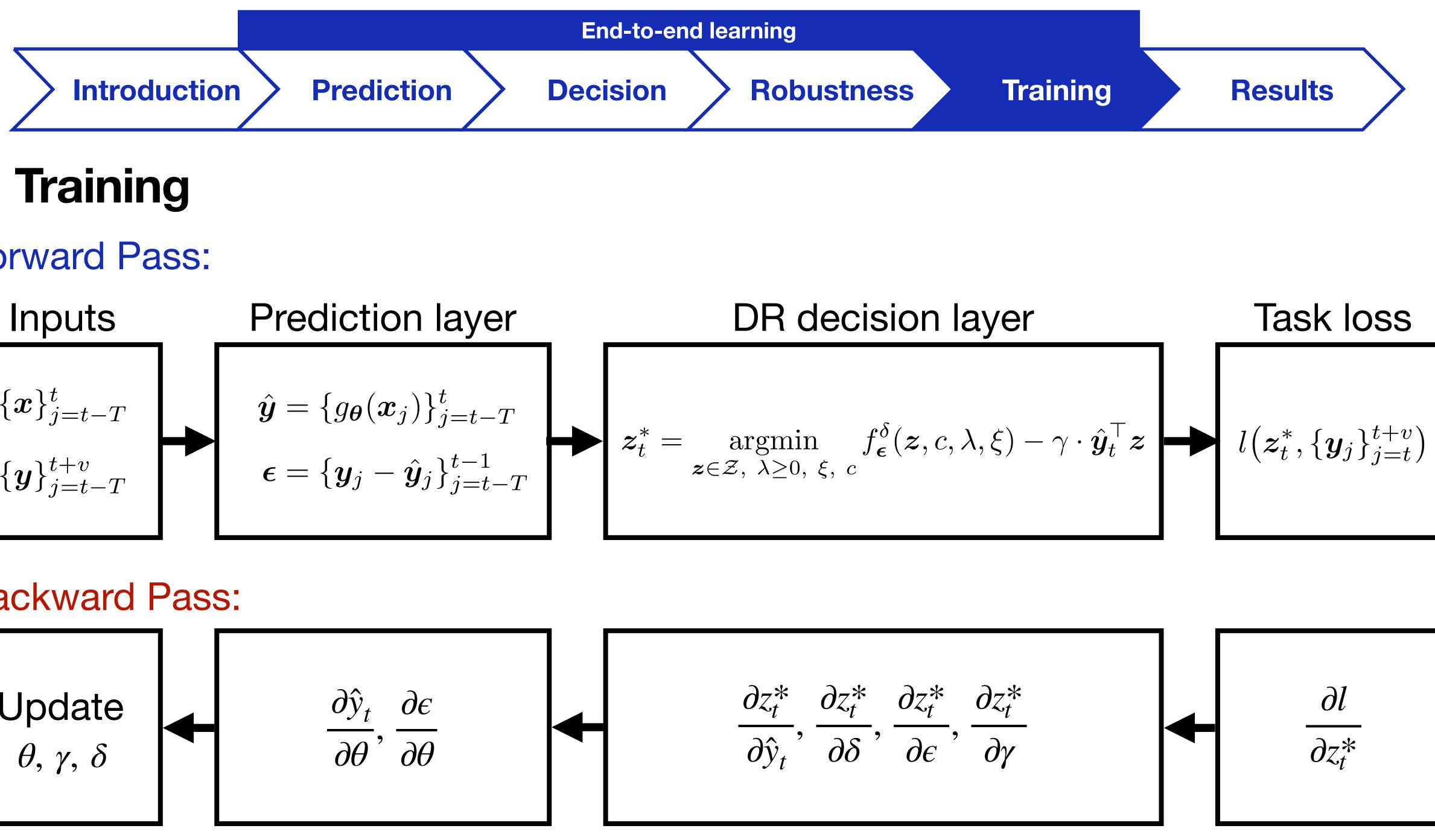


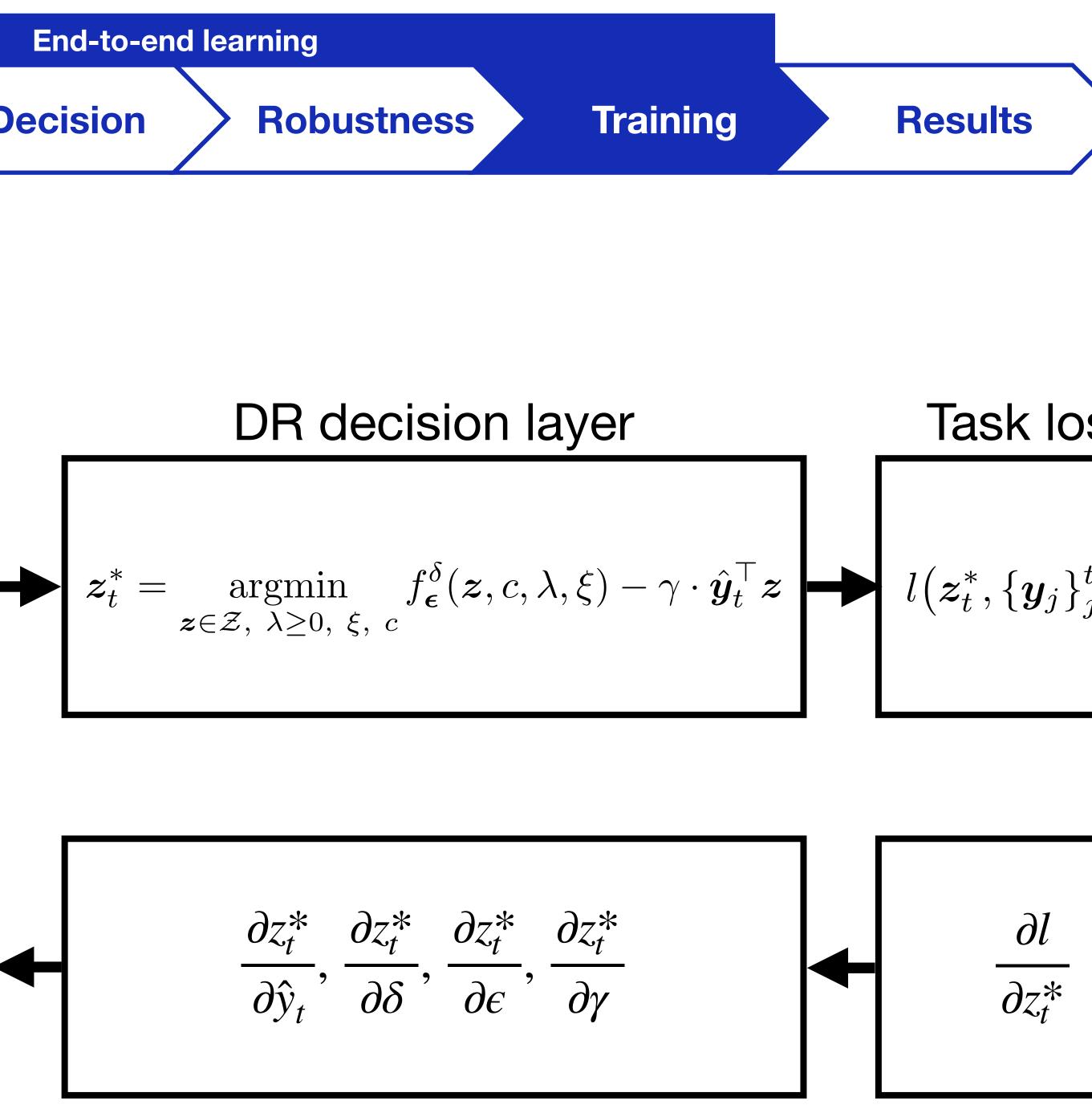
Forward Pass:

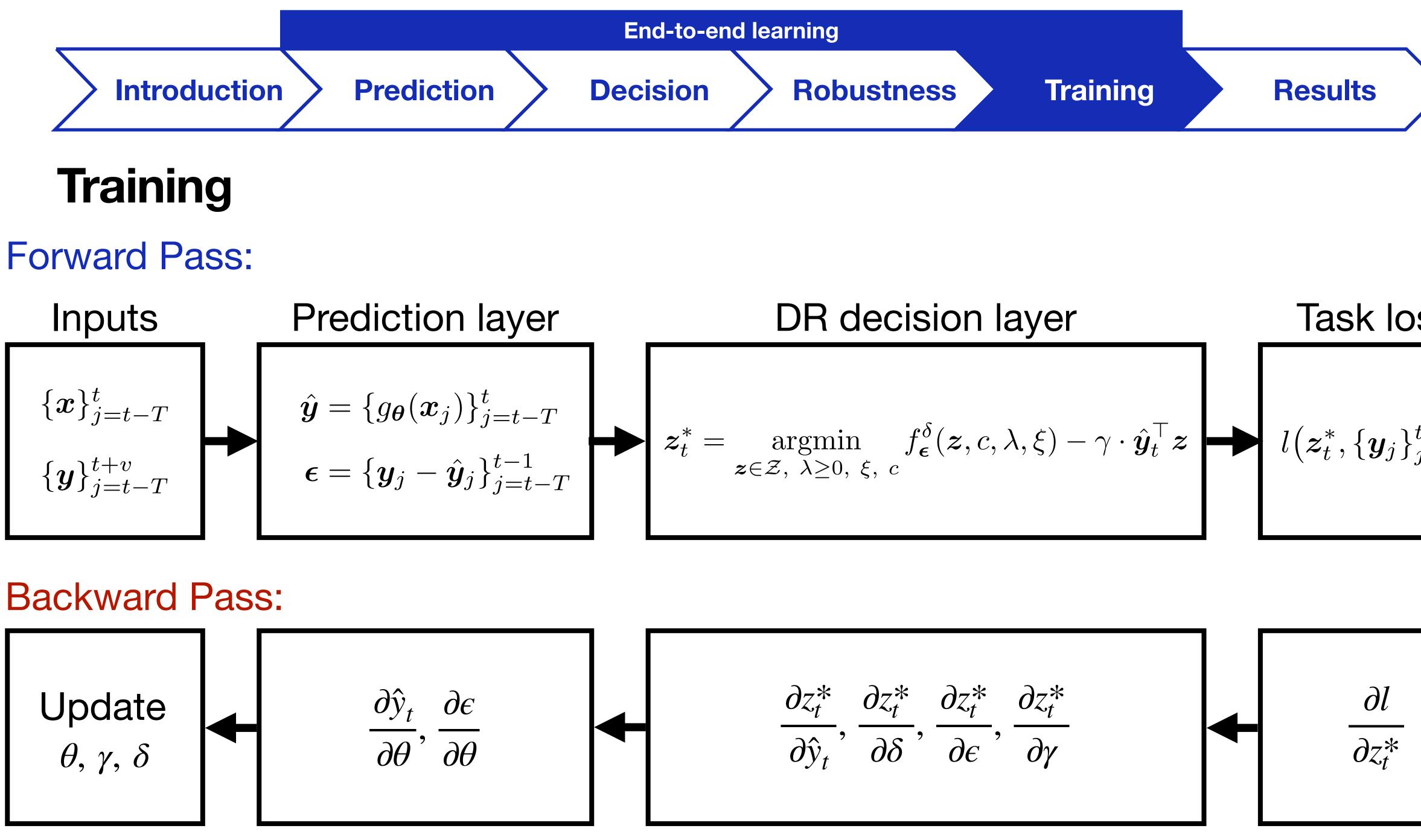
$$\boldsymbol{\epsilon} = \{\boldsymbol{y}_j - \hat{\boldsymbol{y}}_j\}_{j=t-T}^{t-1}$$

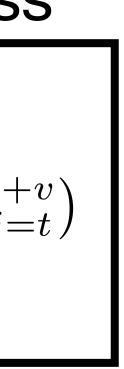


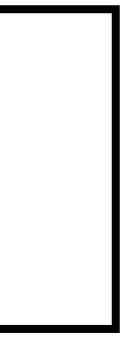


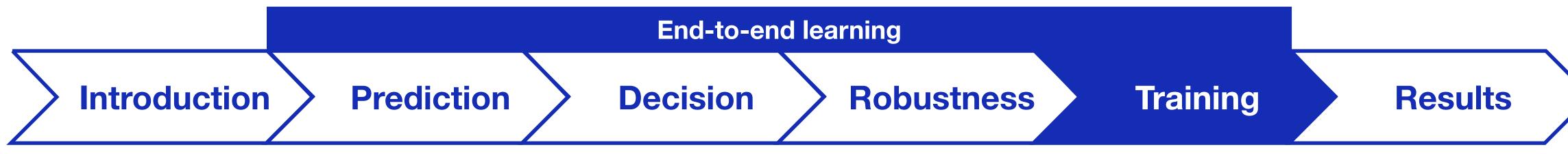






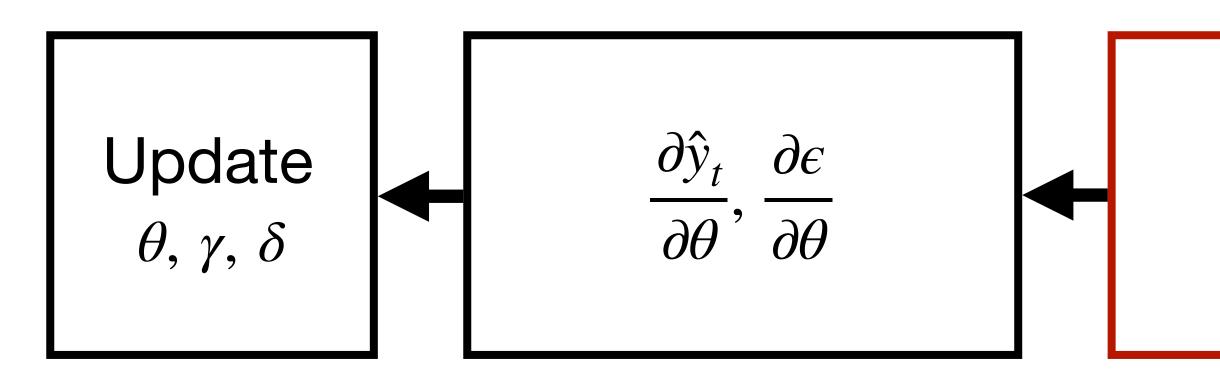




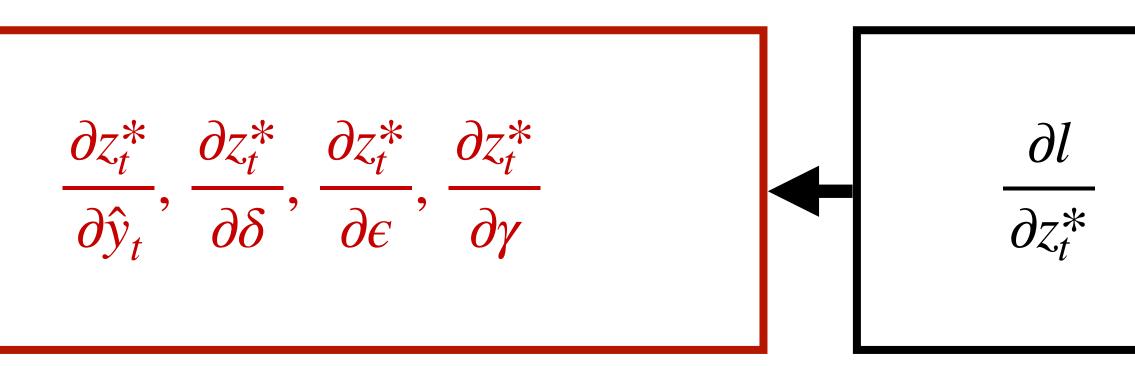


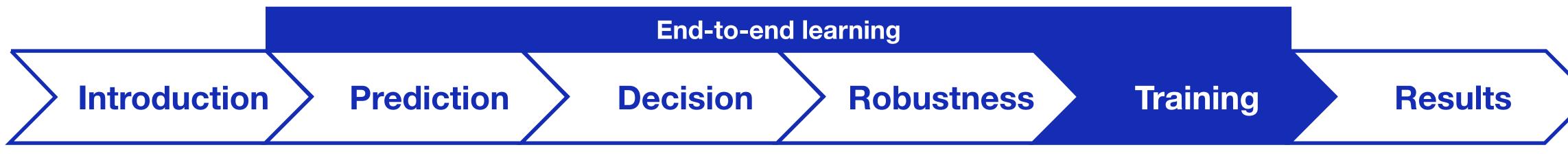
Training

the system of equations arising from the KKT optimality conditions.



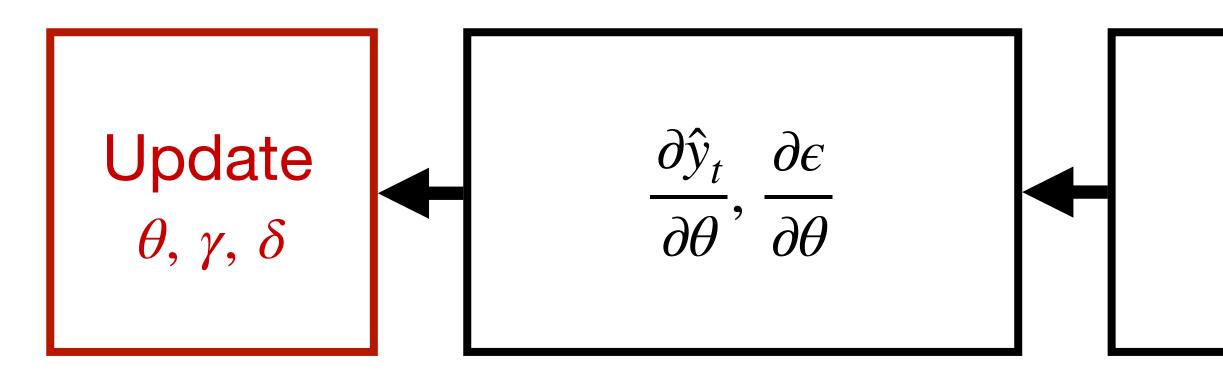
Backpropagation through an optimization problem is possible by differentiating



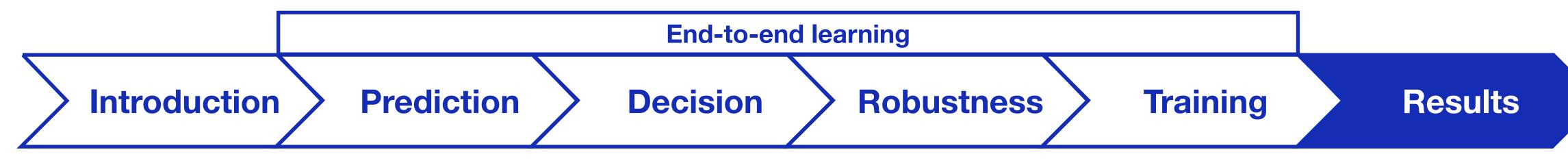


Training

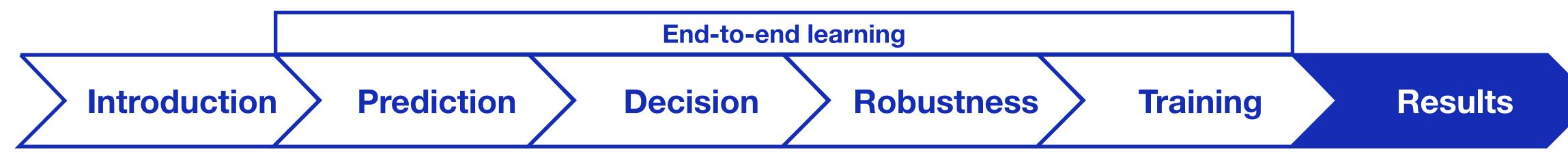
- Backpropagation through an optimization problem is possible by differentiating the system of equations arising from the KKT optimality conditions.
- \triangleright Both γ and δ are learned parameters to enhance out-of-sample performance.



$$\frac{\partial z_t^*}{\partial \hat{y}_t}, \frac{\partial z_t^*}{\partial \delta}, \frac{\partial z_t^*}{\partial \epsilon}, \frac{\partial z_t^*}{\partial \gamma} \qquad \checkmark \qquad \frac{\partial l}{\partial z_t^*}$$



Numerical experiment

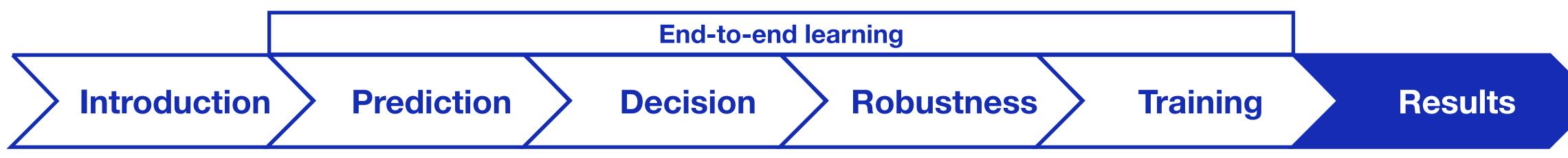


Numerical experiment

- Data: Weekly, 07–Jan–2000 to 01-Oct-2021
 - Assets: 20 stocks from the S&P500
 - *Features*: 8 Fama-French factors

System:

- Prediction layer: Linear
- Task loss: Sharpe ratio + prediction MSE



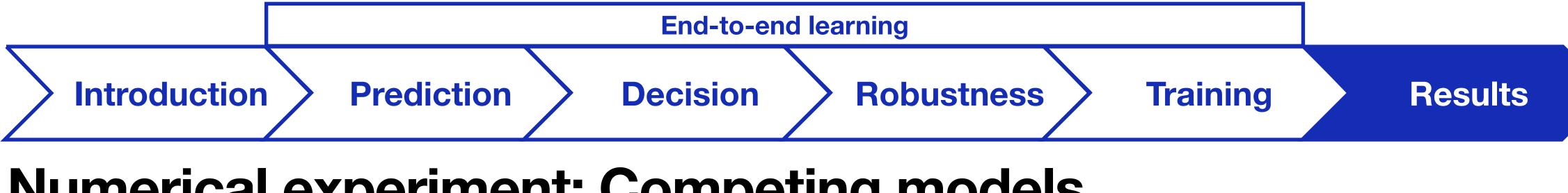
Numerical experiment

- Data: Weekly, 07–Jan–2000 to 01-Oct-2021 Training: 07–Jan–2000 to 18–Jan–2013
 - Assets: 20 stocks from the S&P500
 - *Features*: 8 Fama-French factors

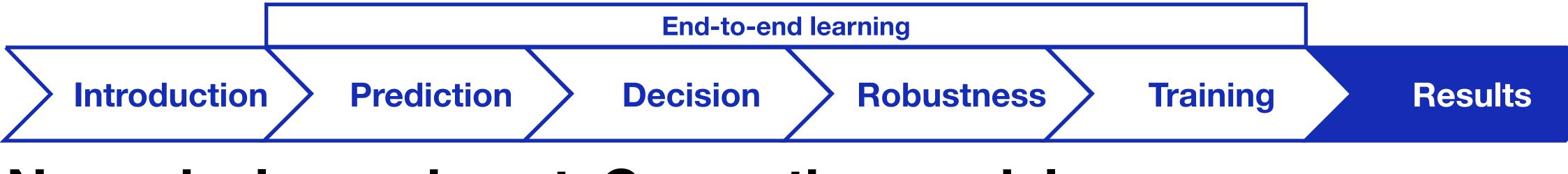
System:

- Prediction layer: Linear
- Task loss: Sharpe ratio + prediction MSE

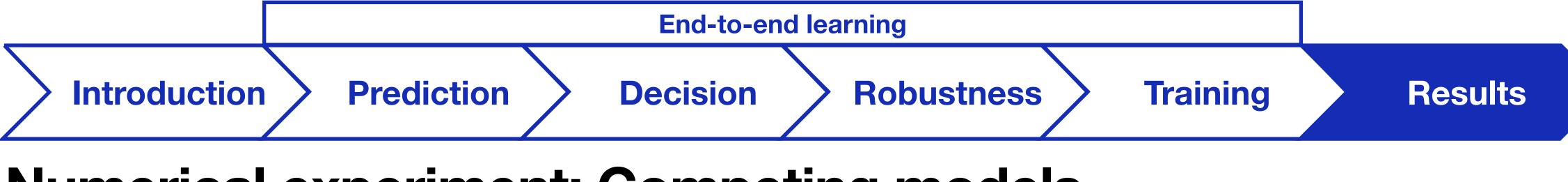
- Prediction layer initialized to OLS weights
- For each point prediction, prediction errors computed from T = 104 observations
- The Sharpe ratio is computed over the subsequent v = 13 weeks
- Time series split cross-validation is used to calibrate the learning rate and number of epochs
- Testing: 25–Jan–2013 to 01–Oct–2021
 - Systems are retrained every 2 years



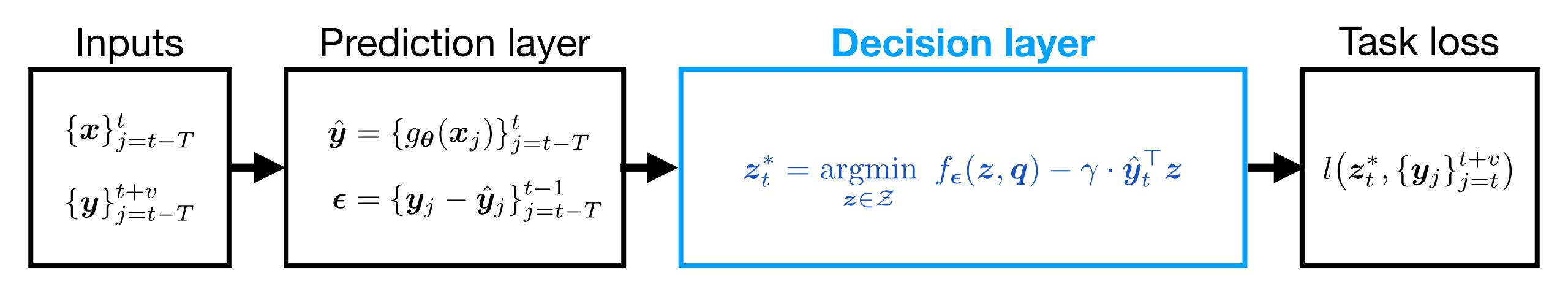
Equal weight: $z_t = 1/n$

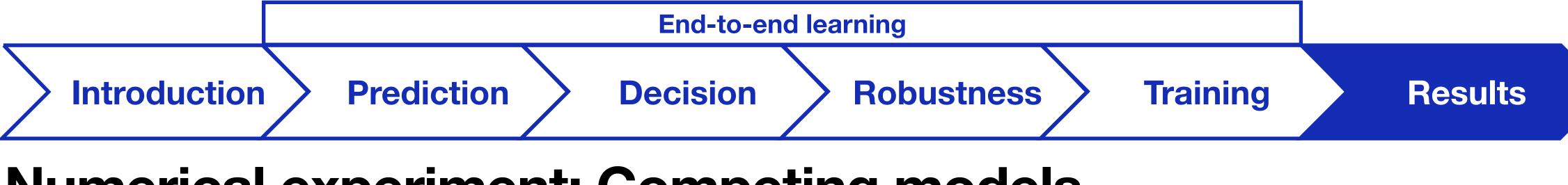


- Equal weight
- Predict-then-optimize: Prediction layer Fixed OLS weights
 - **Decision layer** $\rightarrow \boldsymbol{z}_t^* = \operatorname{argmin} f_{\boldsymbol{\epsilon}}(\boldsymbol{z}, \boldsymbol{q}) \gamma \cdot \hat{\boldsymbol{y}}_t^\top \boldsymbol{z}$ $oldsymbol{z} {\in} {\mathcal{Z}}$ Constants

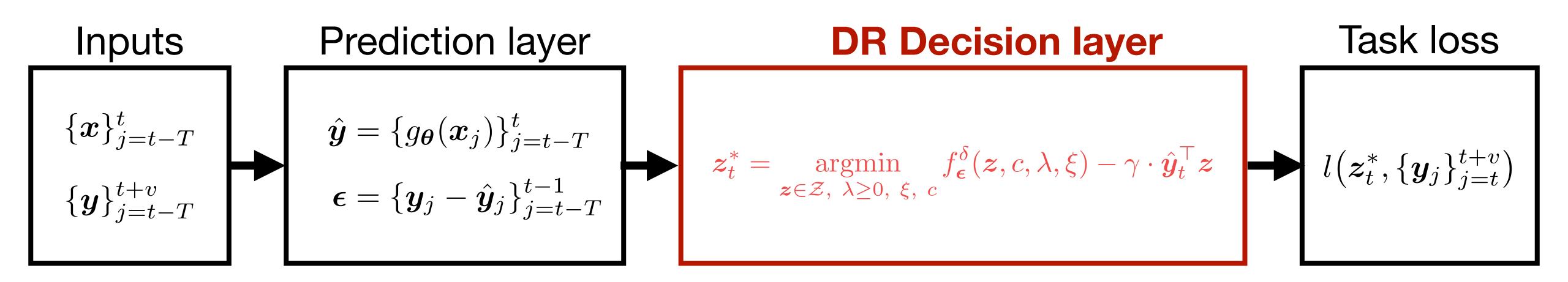


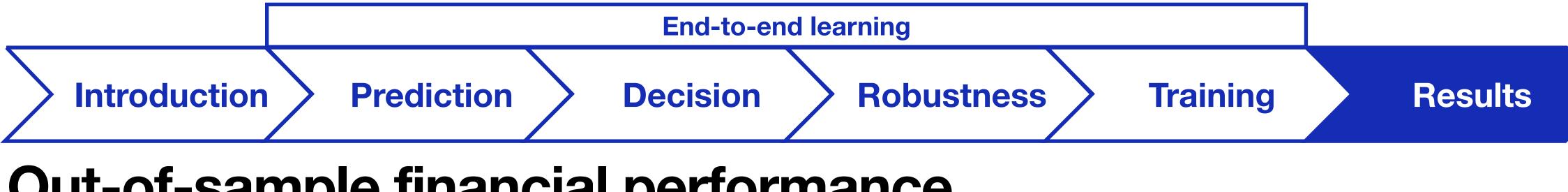
- Equal weight
- Predict-then-optimize
- Nominal:



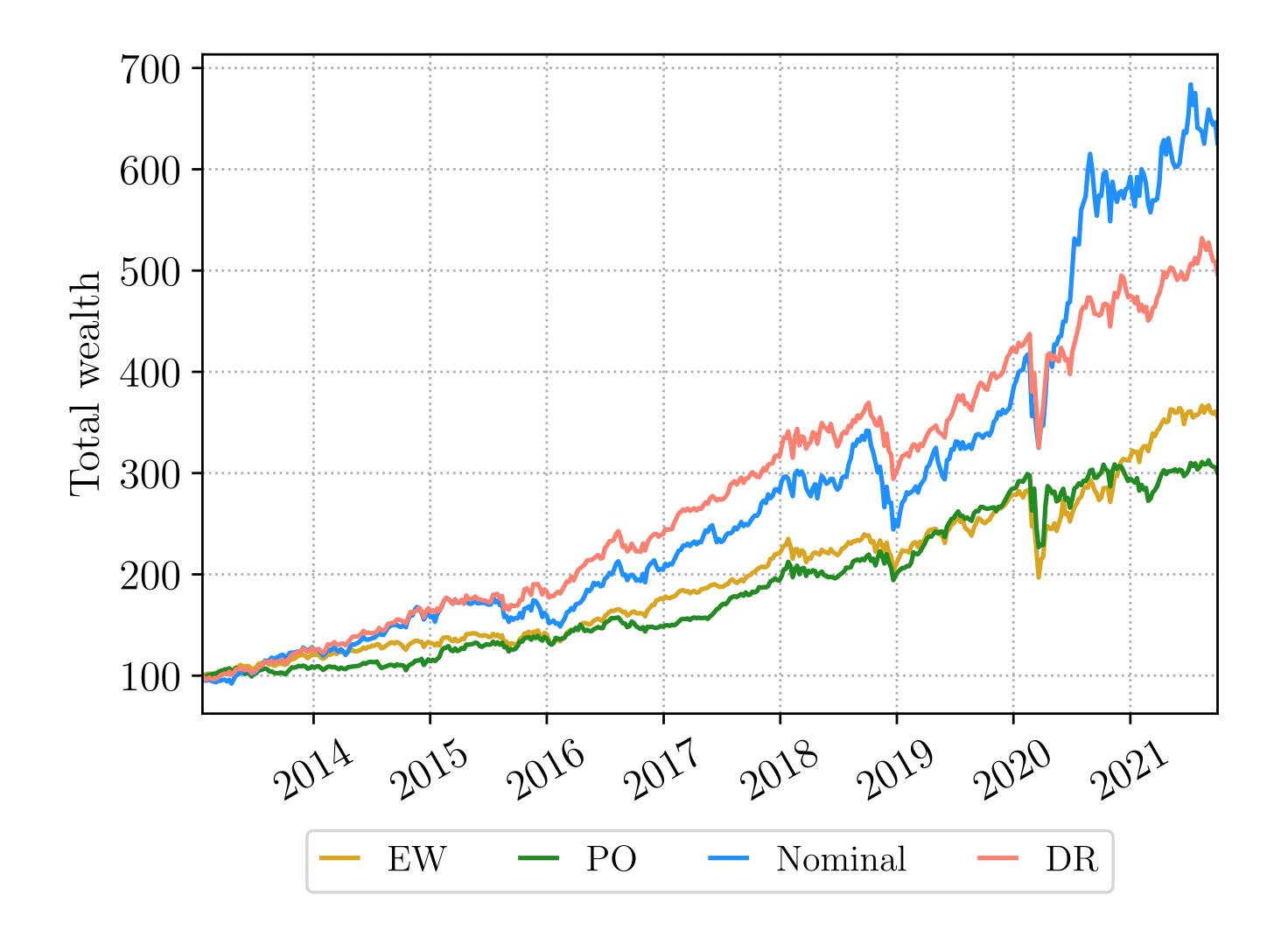


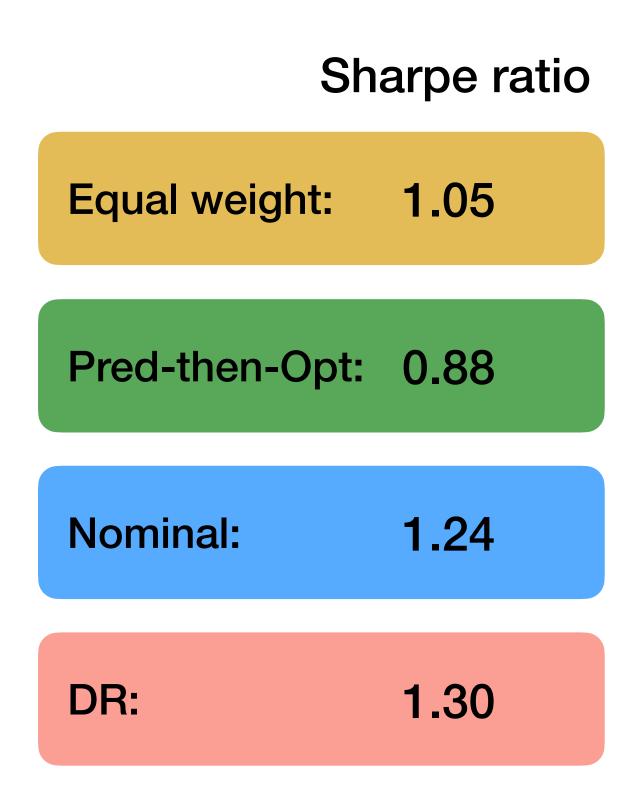
- Equal weight
- Predict-then-optimize
- Nominal
- DR (Hellinger-based):

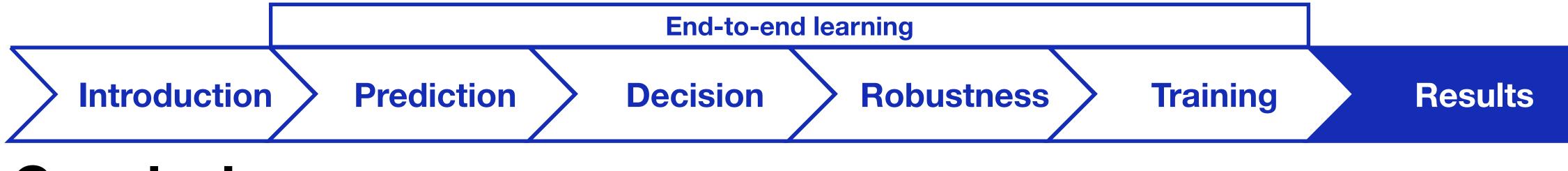


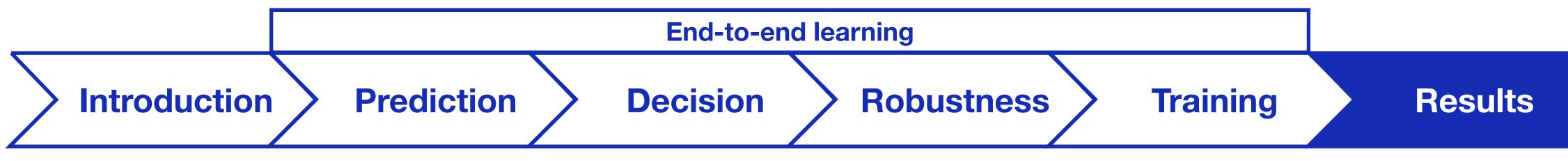


Out-of-sample financial performance

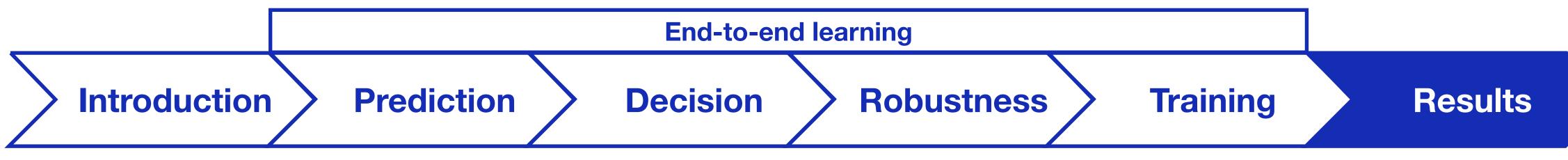




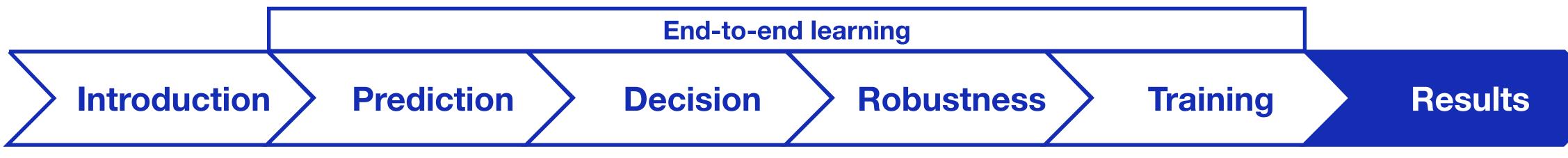




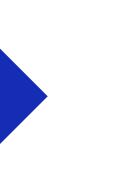
End-to-end system with a robust decision layer that explicitly incorporates prediction model risk.

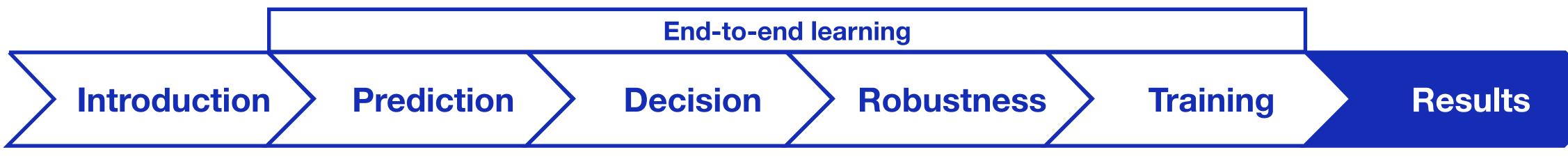


- End-to-end system with a robust decision layer that explicitly incorporates prediction model risk.
 - By design, we pass both the prediction and a set of prediction errors to the decision layer.
 - Furthermore, we introduce robustness by taking the worst-case risk over a set of probability measures.

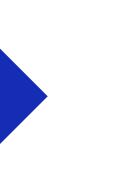


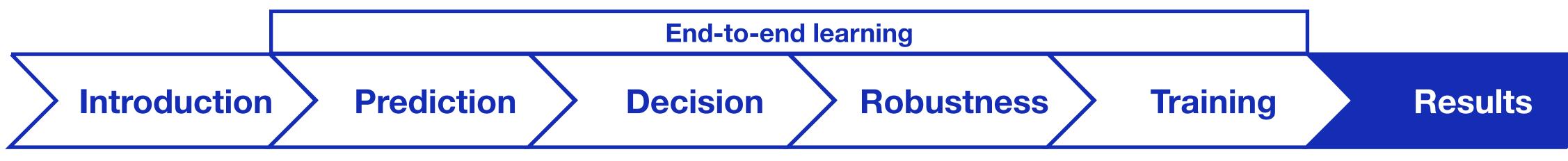
- End-to-end system with a robust decision layer that explicitly incorporates prediction model risk.
 - By design, pass both the prediction and a set of prediction errors to the decision layer.
 - Furthermore, introduce robustness by taking the worst-case risk over a set of probability measures.
- Use convex duality to show that the DR decision layer is computationally tractable.





- End-to-end system with a robust decision layer that explicitly incorporates prediction model risk.
 - By design, pass both the prediction and a set of prediction errors to the decision layer.
 - Furthermore, introduce robustness by taking the worst-case risk over a set of probability measures.
- Use convex duality to show that the DR decision layer is computationally tractable. Risk and robustness parameters are *learned* directly from data.





- End-to-end system with a robust decision layer that explicitly incorporates prediction model risk.
 - By design, we pass both the prediction and a set of prediction errors to the decision layer.
 - Furthermore, we introduce robustness by taking the worst-case risk over a set of probability measures.
- Use convex duality to show that the DR decision layer is computationally tractable. Risk and robustness parameters are *learned* directly from data.
- - Being able to learn these parameters relieves practitioners from the challenge of determining them a priori.

References

- Amos, B. and Kolter, J. Z. Optnet: Differentiable optimization as a layer in neural
- Robust solutions of optimization problems affected by uncertain probabilities. Management Science, 59(2):341-357, 2013.
- on Optimization, 18(3): 853-877, 2007.
- Donti, P. L., Amos, B., and Kolter, J. Z. Task-based end-to-end model learning in Information Processing Systems, pp. 5490–5500, 2017.

networks. In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melen- berg, B., and Rennen, G.

Calafiore, G. C. Ambiguous risk measures and optimal robust portfolios. SIAM Journal

stochastic optimization. In Proceedings of the 31st International Conference on Neural

A draft version our paper is now available

Construction. arXiv preprint arXiv:2206.05134.

Costa, G., & Iyengar, G. N. (2022). Distributionally Robust End-to-End Portfolio

Thank you!