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End-to-end learning

Distributional robustness in end-to-end learning systems

» End-to-end: Integrate the prediction and optimization steps.
e |[nformation is passed between prediction and decision layers during training.

® Training is based on the final task rather than predicted performance.
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Distributional robustness in end-to-end learning systems

» The decision layer is a portfolio optimization problem.
o Suffers from sensitivity to prediction errors.

e \We will use robustness to mitigate model error
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Prediction layer

> gg : R — R" . Prediction model that maps features x; to predictions y;

Input
layer

Hidden

The prediction model can have any
form that allows for gradient-based
learning
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Prediction layer

> gg : R — R" . Prediction model that maps features x; to predictions y;

» ¥ ={90(xz;)};—i_r : Predicted asset returns
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Prediction layer

> go : R™ — R” . Prediction model that maps features x; to predictions y;
= {go(;)};—s_r : Predicted asset returns

» €= {y; —9;}:_;_7 : Prediction errors
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Optimization problem

2z = argmin fo(z)— -9, 2
A

W

Predicted portfolio return
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Decision layer

Optimization problem

2z = argmin fc(z)— -9, 2
z€Z ——

Risk aversion parameter
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Decision layer Let R: R - R, U+ is a closed
convex function where

R(0)=0 and R(X) = R(—X)

Optimization problem

T
1
z, = argnéin felz) — - Q;rz Then, fe(z)= min E R(esz — c)
z€ j=1

W

Deviation risk measure

IS a deviation risk measure
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Optimization problem

2z = argmin fc(z)— -9, 2

2EZ

Deviation risk measure

Prediction layer

End-to-end learning

Decision layer

Example: R(X)= X"
T

1
Then, fe(z)= mcin L Z (esz —c
=1

IS the portfolio error variance

Decision layer

)2 — var(e' z)

Task loss
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Decision layer

» z; : Optimal portfolio

Optimization problem
P P » /.(z) : Convex deviation risk measure

* : ~ |
Z, =argmin [.(z)—7v- Y, 2 A _ _
t ZgEZ Jel2) =74, > 1, z : Predicted portfolio return

> . Risk aversion parameter

Inputs Prediction layer Decision layer Task loss




End-to-end learning

Decision layer

» z; : Optimal portfolio

Optimization problem
P P » /.(z) : Convex deviation risk measure

* : ~ |
Z, =argmin [.(z)—7v- Y, 2 A _ _
t ZgEZ Jel2) =74, > 1, z : Predicted portfolio return

> . Risk appetite - Learnable parameter

Inputs Prediction layer Decision layer Task loss
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Decision layer

» z; : Optimal portfolio

Optimization problem
P P » /.(z) : Convex deviation risk measure

z; = argmin f.(z) — -9, 2

2cZ > 1, z : Predicted portfolio return
> . Risk appetite - Learnable parameter

Prediction layer Decision layer Task loss

z, = argmin f.(z) —
zcZ
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Inputs Prediction layer DR decision layer Task loss




End-to-end learning

Distributionally robust decision layer

Nominal decision layer

z; = argmin fe(z) — 7 9/ 2
zc X

Inputs Prediction layer DR decision layer Task loss




End-to-end learning

Distributionally robust decision layer

Nominal decision layer

z; = argmin fe(z) — 7 9/ 2

P ASYA
Derived from a set of past prediction errors



End-to-end learning

Distributionally robust decision layer

Nominal decision layer Deviation risk measure

z¥ = argmin fe(z,9) —7 Y, z mquJ e z—c

A
Derived from a set of past prediction errors
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Distributionally robust decision layer

Nominal decision layer

2 = argmin fe(z,q) — 79/ 2
zeZ

» Nominal assumption: All scenarios are equally likely, g; = 1/T forj=1,...,T

» Can we protect against scenario probabilities changing in the future®?
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Nominal decision layer DR decision layer

z; = argmin fe(z,q) — 7 Y, 2 * z; = argmin max fe(z,p) — v Y, 2
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» p : probability mass function
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Distributionally robust decision layer

Nominal decision layer DR decision layer

z; = argmin fe(z,q) — 7 Y, 2 * z; = argmin max fe(z,p) — v Y, 2
zcZ 2cZ DEP(9)

P@)={peR" :p>0,1 p=1, I4(p.q) <4}
Y———
Probabillity simplex

» D : probability mass function
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Distributionally robust decision layer

Nominal decision layer DR decision layer

z; = argmin fe(z,q) — 7 Y, 2 * z; = argmin max fe(z,p) — v Y, 2
zcZ 2cZ DEP(9)

P(5) = {p cR' :p>0,1'p=1, I;(p,q) < 5}

H_/
d-constrained distance measure

» p : probability mass function

» Distance measure: gb—divergence (e.g., Kullback-Leibler, Hellinger)
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Distributionally robust decision layer

Nominal decision layer DR decision layer

z; = argmin fe(z,q) —7- Y, 2 * z; = argmin max fe(z,p) —v- 9, 2
2€Z zeZ PEP(I)
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Distributionally robust decision layer

Minimax problem

z; = argmin max_ fe(z,p) — v 9, 2
2cZ DPEP(I)
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Distributionally robust decision layer

Convex minimization problem

: 5 ~T
Zf: alrgIniil fG(Z,C,)\,f)_’Y'yt <
z€Z, )\207 Sa C

Minimax problem Dualrty

z, = argmin max fe(z,p) —7 - Q;rz #
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Distributionally robust decision layer

Convex minimization problem

: 5 AT
Zf: alrgIniil fG(Z,C,)\,f)_’Y'yt <
zEZ, )\207 Sa C

0 is now learnable

Prediction layer DR decision layer Task loss

Minimax problem Dualrty

z, = argmin max fe(z,p) —7 - Q;rz #
zcZ PEP(I)

zf = argmin  fJ(2z,¢,),6) —
ZGZ, AZOa ‘57 C
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Task loss

» Standard supervised learning: loss function = prediction error.

Inputs Prediction layer DR decision layer Task loss

zf = argmin  f2(z,¢,),€) —
ZGZ, >\207 ‘57 C




End-to-end learning

Task loss

» Standard supervised learning: loss function = prediction error.

» End-to-end system: Task loss = out-of-sample performance of the decision.

Inputs Prediction layer DR decision layer Task loss

zf = argmin  f2(z,¢,),€) —
ZGZ, >\207 '57 C




End-to-end learning

Task loss

» Standard supervised learning: loss function = prediction error.
» End-to-end system: Task loss = out-of-sample performance of the decision.

» Task loss function # objective function of the decision layer.

Inputs Prediction layer DR decision layer Task loss
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Task loss

» Define the task loss as the financial performance over the next v time steps.
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Task loss

» Define the task loss as the financial performance over the next v time steps.

» For example, the task loss may be defined as the Sharpe ratio:
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Task loss

» Define the task loss as the financial performance over the next v time steps.

» For example, the task loss may be defined as the Sharpe ratio:
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Training

» The model is trained through gradient descent.
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Training

Forward Pass:
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Training

Forward Pass:
Inputs Prediction layer DR decision layer Task loss

zf = argmin  f2(z,¢ A €)

ZEZ, AZOa ‘Sv C
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End-to-end learning

Training

» Backpropagation through an optimization problem is possible by differentiating
the system of equations arising from the KKT optimality conditions.
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End-to-end learning

Training

» Backpropagation through an optimization problem is possible by differentiating
the system of equations arising from the KKT optimality conditions.

> Both vy and ¢ are learned parameters to enhance out-of-sample performance.

dzf 0dz* 0dzF 0zF
0y, 05 oOe Oy
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Numerical experiment
» Data: Weekly, 07-Jan-2000 to 01-Oct-2021

® Assets: 20 stocks from the S&P500
® features: 8 Fama-French factors

> System:
» Prediction layer: Linear

> Jask loss: Sharpe ratio + prediction MSE



End-to-end learning

Numerical experiment
» Data: Weekly, 07-Jan—-2000 to 01-Oct-2021 » Training: 0/-Jdan-2000 to 18-Jan-2013

® Assets: 20 stocks from the S&P500 ® Prediction layer initialized to OLS weights

® Features: 8 Fama-French factors ® [For each point prediction, prediction errors
computed from T = 104 observations

> System:
® The Sharpe ratio is computed over the

> Prediction layer: Linear subsequent v = 13 weeks

> Jask loss: Sharpe ratio + prediction MSE ® [ime series split cross-validation is used to
calibrate the learning rate and number of
epochs

» Testing: 25-Jan-2013 to 01-Oct-2021

® Systems are retrained every 2 years
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Numerical experiment: Competing models
>

» Predict-then-optimize: Prediction layer =» Fixed OLS weights

Decision layer =% z = argmin f.(z,q) — 7 9, =z

SR

Constants
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Numerical experiment: Competing models
>
» Predict-then-optimize

» Nominal:

Inputs Prediction layer Decision layer Task loss
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End-to-end learning

Numerical experiment: Competing models
>

» Predict-then-optimize

» Nominal

» DR (Hellinger-based):

Inputs Prediction layer DR Decision layer Task loss

: ) ~ T
Zf: arginiil fe(z7ca)\7€)_7°yt <
zeZ, A\>0, &, c




End-to-end learning

Out-of-sample financial performance

700 - Sharpe ratio

600 - Equal weight: 1.05

" _
400 - R
300 _ ‘ 4 ' _

Total wealth
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End-to-end learning

Conclusion

» End-to-end system with a robust decision layer that explicitly incorporates
prediction model risk.

e By design, we pass both the prediction and a set of prediction errors to the
decision layer.

e Furthermore, we introduce robustness by taking the worst-case risk over a set of
probability measures.

» Use convex duality to show that the DR decision layer is computationally tractable.
» Risk and robustness parameters are learned directly from data.

e Being able to learn these parameters relieves practitioners from the challenge of
determining them a priori.
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