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Iterated and exponentially weighted moving principal component analysis

David Finkelstein
DQR Ltd

The principal component analysis (PCA) is a staple
statistical and unsupervised machine learning tech-
nique in finance. The application of PCA in a financial
setting is associated with several technical difficulties,
such as numerical instability and nonstationarity. We
attempt to resolve them by proposing two new vari-
ants of PCA: an iterated principal component analysis
(IPCA) and an exponentially weighted moving principal
component analysis (EWMPCA). Both variants rely on
the Ogita–Aishima iteration as a crucial step.
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Background

▶ The principal component analysis (PCA) [Jol02, JC16] invented by Pearson [Pea01]
and improved by Hotelling [Hot33, Hot36] is a staple statistical and unsupervised
machine learning technique in finance [AA21].

▶ Its central idea is to reduce the dimensionality of a data set consisting of a large
number of interrelated variables, while retaining as much as possible of the variation
present in the data set.

▶ This is achieved by transforming to a new set of variables, the principal components
(PCs), which are uncorrelated, and which are ordered so that the first few retain most
of the variation present in all of the original variables.
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Technical difficulties

▶ The entire data set may not be immediately available (it may be arriving piecewise in
real time), so one is forced to work with its subsets pertaining to different time intervals.

▶ First, when the PCs are computed separately on each subset, the geometry of the
resulting PCs may suffer from numerical artifacts. In particular, the sign of a given PC
may “flip” from one subset to the next.

▶ Second, financial data are rarely stationary, and the assumption of a constant
covariance matrix is rarely justified.
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Proposed solutions

▶ To remedy the first problem, we propose an iterated principal component
analysis (IPCA): instead of computing the principal components on each arriving
subset independently, we iteratively refine them from one subset to the next.

▶ To remedy the second problem, we combine the aforementioned iterative refinement
with an exponentially weighted moving computation of the covariance matrix, to obtain
an exponentially weighted moving principal component analysis (EWMPCA).

▶ We are heavily indebted to Ogita and Aishima, who proposed an iterative refinement
method for symmetric eigenvalue decomposition [OA18], on whose work we build.
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Data sets

▶ We have used two data sets in this study. Both are derived from data supplied by
FirstRate Data and both consist of hourly returns on futures.

▶ The first data set (Data Set 1) covers the period 20th August, 2007 to 4th June, 2021,
both inclusive, and consists of hourly returns on equity futures: DAX (DY), E-Mini
S&P 500 (ES), E-Mini S&P 500 Midcap (EW), Euro Stoxx 50 (FX), CAC40 (MX),
E-Mini Nasdaq-100 (NQ), E-Mini Russell 2000 (RTY), FTSE 100 (X), Dow Mini (YM).

▶ The second data set (Data Set 2) covers the period 10th September, 2012 to 4th June,
2021, both inclusive, and consists of hourly returns on fuel futures: Brent Last Day
Financial (BZ), Crude Oil WTI (CL), Natural Gas (Henry Hub) Last-day Financial (HH),
NY Harbor ULSD (Heating Oil) (HO), Henry Hub Natural Gas (NG), RBOB
Gasoline (RB).
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Classical PCA: the formalism

▶ A data set of n observations of p features can be represented by an n× p data matrix
X , whose jth column, x:,j , is the vector of n observations of the jth feature.

▶ We seek a linear combination of the columns of matrix X with maximum variance.
Such linear combinations are given by Xw(1), where w(1) is a vector of constants
w(1)

1 , . . . ,w(1)
p .

▶ It can be shown that w(1) must be a (unit-norm) eigenvector of the sample covariance
matrix Q associated with the data set; more precisely, the eigenvector corresponding
to the largest eigenvalue λ(1) of Q .

▶ The full set of eigenvectors w(1), . . . ,w(p) of Q , corresponding to the eigenvalues
sorted in decreasing order, λ(1), . . . ,λ(p), are the solutions to the problem of obtaining
up to p linear combinations Xw(k ), 1 ≤ k ≤ p, which successively maximize variance,
subject to uncorrelatedness with previous linear combinations.

▶ We call these linear combinations the principal components (PCs) of the data set.
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Classical PCA: the implementation details

▶ It is standard to define PCs as the linear combinations of the centred variables x∗:,j ,
with generic element x∗ij = xij − x̄:,j , where x̄:,j denotes the mean value of the
observations on variable j.

▶ At the core of PCA is the eigendecomposition of the sample covariance matrix Q or,
equivalently, the singular value decomposition (SVD) of the data matrix X .

▶ An industry-standard implementation of PCA is sklearn.decomposition.PCA in the
software library scikit-learn [PVG+11]. It uses the LAPACK [ABB+99] implementation
of the full SVD or a randomized truncated SVD by the method of Halko et al. [HMT11].

▶ When comparing our results to the classical PCA it is this implementation that we use
as a benchmark.
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The Ogita–Aishima algorithm

▶ Ogita and Aishima have proposed and analyzed an iterative refinement
algorithm [OA18, Algorithm 1] for approximate eigenvectors X̂ of A .

▶ The authors demonstrate the monotone and quadratic convergence of the algorithm
under some reasonable technical conditions.

1 function ogita aishima step(A , X̂ )
2 λ̃, R, S ← estimate eigenvalues(A , X̂ , true) ▷ Compute approximate eigenvalues.
3 D̃ ← ((diag)λ̃i)
4 δ← 2(||S − D̃||2 + ||A ||2||R ||2)
5 for i ← 1 to n do
6 for j ← 1 to n do

7 ẽij ←
{

sij+λ̃j rij
λ̃j−λ̃i

, if |λ̃i − λ̃j | > δ;

rij /2, otherwise.
▷ Compute Ẽ.

8 X ′ ← X̂ + X̂ Ẽ
9 return X ′
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Estimating the eigenvalues

▶ We need to be able to estimate the eigenvalues of a given real symmetric matrix
A ∈ Rn×n for a precomputed set of eigenvectors X̂ ∈ Rn×n (the eigenvectors are in
the columns of X̂ ):

1 function estimate eigenvalues(A , X̂ , return extra)
2 R ← I− X̂⊺X̂
3 S ← X̂⊺AX̂
4 for i ← 1 to n do
5 λ̃i ← sii /(1− rii)

6 if return extra then
7 return λ̃, R, S
8 else
9 return λ̃
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Achieving the required level of convergence

▶ We wrap the function ogita aishima step in a higher-level function that performs the
number of iterations required for satisfying a sensible convergence criterion.

1 function ogita aishima(A , X̂ , tol=1e-6, max iter count=none, sort by eigenvalues=false)
2 iter count← 0
3 while true do
4 iter count← iter count + 1
5 X̂ ′ ← ogita aishima step(A , X̂ )
6 if max iter count is not none and iter count == max iter count then
7 break
8 ϵ← ||X̂ ′ − X̂ ||2
9 if ϵ ¡ tol then

10 break
11 X̂ ← X̂ ′

12 if sort by eigenvalues then
13 λ̃← estimate eigenvalues(A , X̂ ′, false)
14 Sort λ̃ in descending order and reorder the corresponding columns of X̂ ′ to

match that order
return X̂ ′
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Iterated PCA

▶ Iterated PCA (IPCA) is a straightforward extension of PCA wherein the algorithm can
be fitted multiple times.

▶ Every time fit is invoked on a new data subset, that subset’s sample covariance matrix
Q is calculated.

▶ The eigenvectors Ŵ of Q are stored between the fits; for each new Q the previous
eigenvectors are used as an initial guess in ogita aishima(Q , Ŵ ,
sort by eigenvalues=true).

▶ At the beginning, when no initial guess is available, the eigenvectors are obtained
using standard methods.
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Classical PCA

We perform classical PCA on Data Set 1 twice. In the first instance, we perform PCA on the
entire dataset. In the second, we perform PCA on each year individually and stack the

results together. We then produce scatter plots, where the second result (y-axis) is plotted
against the first result (x-axis).
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IPCA

We perform classical PCA on Data Set 1. Then we perform IPCA on each year individually
and stack the results together. We then produce scatter plots, where the second result

(y-axis) is plotted against the first result (x-axis). IPCA resolves the numerical instability
problem witnessed on the previous slide.
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Moving statistics

▶ Let x1, . . . , xt , t ∈N, be a sequence of p-dimensional observations.
▶ The exponentially weighted moving average for this sequence can be calculated

recursively as

mt =

{
x1, t = 1,
(1− α)xt + αmt−1, t > 1,

where 0 < α < 1 is a constant parameter.
▶ Tsay [Tsa10] proposes a similar moving statistic for the sample covariance:

St =

{
0p×p , t = 1,
(1− α)(xt −mt )(xt −mt )⊺ + αSt−1, t > 1,

▶ One way to estimate the parameter α is by using maximum likelihood (ML). For
example, if x1, . . . , xT , t ∈N, are normally distributed, then αML is the value of α that
maximizes

lnL(α) ∝ − 1
2

T

∑
t=1
|St | −

1
2

T

∑
t=1

(xt −mt )
⊺S−1

t (xt −mt ).

▶ In an example in Section 10.1 of [Tsa10], Tsai describes the value α ≈ 0.9305 as
being in the typical range commonly seen in practice.
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Nonstationarity

Moving statistics reveal the nonstationary nature of financial data. Consider Data Set 1 as
an example. The variances of the returns on individual futures change over time and exhibit
the so-called volatility clustering [Con07]; the correlations between pairs of futures are also

time-varying.
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The covariance matrix is time-varying

▶ Heatmaps comparing the sample covariance matrix with a time series of exponentially
weighted covariance matrices.

▶ Whereas the mean exponentially weighted moving covariance matrix resembles the
sample covariance matrix, individual exponentially weighted moving covariance
matrices (such as the last one in our time series shown above) may differ from it
significantly.

▶ The principal components obtained using the sample covariance matrix present an
averaged picture; we need a more precise tool to work out what’s going on at each
time step.
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Exponentially weighted moving PCA

▶ Combining ideas from the Ogita–Aishima iteration and moving statistics it is
straightforward to formulate an exponentially weighted moving PCA (EWMPCA).

1 function ewmpca(X , α, Ŵ initial, tol=1e-6, max iter count=none)
2 for i = 1, . . . , n do
3 if i == 1 then
4 m← x⊺i,: ▷ Exponentially weighted moving average.
5 S ← 0p×p ▷ Exponentially weighted moving covariance.
6 Ŵ ← Ŵ initial ▷ Eigenvectors of S.
7 zi,: ← 01×p ▷ Principal components.
8 else
9 m← (1− α)x⊺i,: + αm

10 x∗ ← x⊺i,: −m
11 S ← (1− α)x∗(x∗)⊺ + αS
12 Ŵ ← ogita aishima(S, Ŵ , tol, max iter count, sort by eigenvalues=true)
13 zi,: ← (x∗)⊺Ŵ

return z

▶ Ŵ initial must be such as to facilitate convergence. One option is to use the sample
covariance matrix for the first few (say 100) observations.
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PCA vs EWMPCA

Heatmaps of the crosscovariance and crosscorrelation between the classical PCA and
EWMPCA principal components computed on Data Set 1. As we can see, the EWMPCA

principal components are not pairwise uncorrelated; by construction, they are uncorrelated
locally, not on average. However, the pairwise correlations are low. For the most part, the

EWMPCA principal components are distinct from the corresponding classical PCA principal
components.
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Economic validation

▶ Has EWMPCA economic significance over and above that of the classical PCA?
▶ While there are many ways to explore this question, we focus on a particular

approach. Avellaneda and Lee have demonstrated in [AL10] that PCA can be used to
generate profitable trading strategies. Can EWMPCA better them?

▶ For each component, we obtain a trading strategy, and a backtest gives us its Sharpe
ratio [Sha94].

▶ We compute the Sharpe ratios for the strategies based on the classical PCA as well as
for the strategies based on EWMPCA, while keeping all parameters equal between the
two methods.
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Results

Data Set 1 Data Set 2

Principal component Classical PCA EWMPCA Classical PCA EWMPCA

PC1 0.65 0.73 -0.32 0.02
PC2 0.43 1.02 -0.39 -0.34
PC3 -0.2 0.89 -0.13 0.48
PC4 -0.11 -0.11 -0.47 0.26
PC5 0.5 -0.33 0.3 -0.39
PC6 -0.01 -0.13 0.37 -0.16
PC7 -0.5 0.04
PC8 -0.03 0.06
PC9 -0.08 0.23
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Implementation

▶ The code behind this paper is publicly available on GitHub:
https://github.com/sydx/xpca

▶ The repository contains a general-purpose Python library, xpca.py, and the
notebooks that were used to produce the figures in this paper.

▶ The class IPCA implements the iterated PCA algorithm. It has been modelled on
sklearn.decomposition.PCA, so that IPCA can be a drop-in replacement for the
former.

▶ No attempt to achieve industrial-grade performance has been made; in particular, the
functions estimate eigenvalues, ogita aishima step, and ogita aishima could
benefit from further optimization.

▶ The class EWMPCA, as the name suggests, implements the EWMPCA algorithm. It can
be used in two modes (and the modes can be interleaved):
▶ the online mode, where the method add is applied to a single observation and returns the

corresponding observation transformed to the principal component space;
▶ the batch mode, where the method add all is applied to a matrix whose rows are

p-dimensional observations; the result is, then, a matrix of principal components.

https://github.com/sydx/xpca
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A Data Driven Approach to Market Regime Classification

Conor McIndoe. A Data Driven Approach to Market Regime
Classification. A thesis submitted for the degree of MSc in
Mathematics and Finance, 2019-2020.

We provide a novel algorithm which attempts to classify market regimes
in U.S. equities time series. As far as possible, manual intervention is
avoided, preferring a data-driven approach. The path signature is utilized
as a central tool; the application of which is justified. We discuss the
connection between market regimes and distributions of path signatures,
and provide a metric space structure on the latter which allows for a
clustering to be formulated. The code both to reproduce and to develop
further the clustering algorithms presented is provided on GitHub.

Paper in preparation; joint work with Antoine (Jack) Jacquier.
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Distributional Reinforcement Learning for Optimal Execution

Toby Weston
Imperial College London

Toby Weston. Distributional Reinforcement Learning for
Optimal Execution. A thesis submitted for the degree of MSc in
Mathematics and Finance, 2019-2020.

When trading a financial asset, large orders will often incur higher exe-
cution costs as the trader uses up the available liquidity. To reduce this
effect, orders are split and executed over a short period of time. Theo-
retical solutions for how to optimally split orders rely on models of market
environments. These fail to take into account market idiosyncrasies and
tend to oversimplify a complex optimisation problem.

Deep Q learning provides a set of methodologies for learning an optimal
solution from real experience. Successful application would allow mod-
els of the trading environment to be sidestepped in favour of direct inter-
action with the financial markets. Deep Q learning has previously been
applied to the problem of optimal execution and has shown promise, both
in simulated environments and on historical data.

In the last few years many improvements have been suggested for the
vanilla deep Q learning algorithm. Distributional reinforcement learning
in particular has shown to outperform value based deep Q learning on
a selection of Atari games. Given the highly stochastic nature of the
trading environment it is reasonable to assume that it would perform well
for the problem of optimal execution.

In the following work we will outline the principles behind distributional
reinforcement learning and show that it can outperform value based deep
Q learning for optimal execution. To the best of our knowledge this is the
first time distributional reinforcement learning has been used for optimal
execution.

Paper in preparation; joint work with Antoine (Jack) Jacquier.
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